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Abstract 

The improvement of servo-controlled applications and the disturbance-compensation 

with good dynamics, little overshooting and minimization of steady state errors is a 

focus of investigation in electrohydraulic drive trains. The need for energy-saving 

solutions with good efficiency leads to the question how the productivity of drive trains 

can be maximized. The approach proposed in this paper shows a way to maximize the 

utilization of repetitive processes taking the drive limitations into account. Combining 

the planning of trajectories according to the systems limitations and an iterative 

learning controller (ILC) this paper shows a way to achieve good accuracy despite 

varying drive system parameters and limitations. The iterative approach uses an 

inversion-based mathematical model of a highly nonlinear plant to minimize the 

position error on basis of a quadratic next-iteration cost criterion. To show the potential 

of the ILC it is applied to the displacement-controlled clamping unit of a 1600 kN 

injection moulding machine. Furthermore the methodology shows a way to recall the 

maximum dynamic potential of the displacement-controlled hydraulic drive system 

without reaching stability limits. 

Keywords: iterative learning control, ILC, trajectory planning, injection moulding, energy 

efficiency, drive constraints. 

1. Introduction 

Energy-saving drive trains play a major role in research and development. Especially in 

stationery machinery there is a huge potential for energy-saving drive trains, which the 

developments during the last ten years show. Many tests have been carried out to 

compare dynamic performance, price and efficiency. However, these comparisons 

especially between hydraulic and electromechanic market-available drive trains often 

did not account for the fact that the overall efficiency of drive trains highly depends on 

the operating point. 



If big forces need to be applied with excellent dynamic performance, hydraulic valve 

control is the drive of choice. New concepts with separated meter-in meter-out valves 

improve the situation but throttle losses still limit the efficiency. Servo-driven 

displacement controlled systems have been investigated for a long time /1/,/2/ and are 

nowadays applied in a lot of machines. However, maximum dynamics are often not 

recalled because of stability problems and improvements being made based on 

experience as well as “trial and error”. 

Plastics and rubber machinery is one of the most important fields of series machines in 

which hydraulic drive systems are applied. Driven by the trend of falling prices in 

electric servodrive technology and the demand for energy-saving drive trains, 

displacement-controlled drives have gained importance in stationary machinery. The 

fact that in many industrial applications the requirements are not exactly known results 

in oversized components and hence a lower grade of utilization and higher capital cost. 

Many studies have been carried out in the last years to strengthen the position of 

hydraulics in this highly competitive market via the integration of modern control 

strategies. Apart from the improvement of the process itself, the decrease of cycle 

times is one key to increase efficiency. For existing systems the best productivity can 

be reached if the systems are used to full capacity, this also applies to the drive trains 

themselves. In the case of follow-up control systems this results in the need for a 

trajectory which uses the system to full capacity.  

In a previous paper /3/ it was shown how a trajectory planning in combination with a 

feed-forward control based on the inversion of the system can improve the tracking 

performance significantly. One remaining challenge is that the tracking performance 

directly depends on the model accuracy. As a consequence errors in the system 

description and time related parameter changes can only be reduced by a closed-loop 

control which again leads to compromises of reference and fault-response action. 

Promising closed-loop control concepts such as input-output linearization or sliding-

mode control have been applied to hydraulic drives during the last years /4/,/5/,/6/. 

These advanced controllers use the knowledge of the plant to act against an (already 

occurred) error. If the process and even the trajectory are known one can use these 

facts to overcome this structural problem of online closed-loop control. Iterative 

learning control (ILC) is a promising offline control scheme for repetitive processes as it 

offers the chance to incorporate past control information. Problems occur if due to 

model inaccuracies or changing parameters drive limitations are reached: Tracking 

errors increase and ILC may become instable. 

The paper focuses on a systematic approach to increase the usage of an energy-

saving servo-driven displacement controlled clamping unit of an injection moulding 



machine and is outlined as follows: In chapter 2 an analytical description of the system 

is derived. It is used in chapter 3 for deriving trajectories in order to exploit the 

maximum dynamics of the system and to provide an analytical description of a model-

based feed-forward control. In chapter 4 the iterative learning law is introduced and 

expanded by the consideration of the systems limitations. Chapter 5 presents results of 

the practical implementation. Finally, chapter 6 concludes by summing up the results 

and giving an outlook on further investigations. 

2. Process and drive system description 

The injection moulding process is a discontinuous primary shaping procedure. An 

injection moulding machine (IMM) consists of different drive systems which realize the 

movements for a stable plastic injection moulding process. The clamping unit drive 

system operates the opening and closing of the mould and applies the clamping force. 

A toggle lever system features a highly nonlinear transmission ratio and is therefore 

often used for high performance machines. Here the movement and clamping of the 

mould makes up to 40% of the process-time, wherefore a shortening directly leads to 

an increase of productivity. Figure 1 shows the clamping unit used for the 

investigations. 
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Figure 1: Injection moulding machine and clamping unit structure 

The drive system structure consists of a combination of electric, hydraulic and 

mechanical parts. A model covering the main influencing effects requires mathematical 

descriptions of frequency inverter and motor,  
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as well as the equilibrium of forces /7/: 
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Transforming these equations in the complex variable domain yields the transfer 

function: 
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and the nonlinearities shown in figure 2. For a detailed derivation we refer to /3/ and 

/8/. 
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Figure 2: Nonlinear system structure 

At this point, the model can be validated comparing the transient response of the model 

with the real system, figure 3. 
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Figure 3: Simulation and measurement of tracking error and velocity 

3. Control structure 

To reach maximum dynamics with the best tracking performance possible, a motion 

path (trajectory) has to be created considering the constraints given by the physical 

system structure. The tracking error can be kept small with a model-based feed-

forward control. The open-loop control is closed by a proportional controller. 

 



3.1. Trajectory generation 

The idea of a model-based trajectory generation is to account for the inherent physical 

system boundaries (e.g. maximum motor torque, limitations of speed, acceleration and 

jerk, temperature…) and the user-given boundaries (i.e. speed limits or tracking 

performance because of a manufacturing process) while planning a motion track. This 

leads to a trajectory which drives the system as close as possible along the inherent 

boundaries. A convenient way to derive the shortest possible trajectory is to calculate 

the path along the given restrictions of motor torque, speed and jerk. In this work an 

iterative calculation along the given boundaries is proposed, calculating the shortest 

possible time step for the next position step dx of the discretised trajectory: 

dxxx ii +=+1  (12) 

Starting from a certain point 
0

x  the time t∆  of the next interval dx can be derived 

iteratively using the maximum allowed jerk 
max
x&&&  as equation 13 illustrates. 
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Now we need to check if the calculated time t∆  exceeds the maximum acceleration 

and/or speed. This is done via 
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Applying this calculus iteratively to each step of the calculation, a trajectory, which 

meets one of the given boundaries in each point, can be derived piecewise. The 

resulting track is interpolated with b-splines to assure a continuous differentiable 

motion trajectory. 
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Figure 4: Linear quadratic trajectory of an industrial controller (lq)  

and developed higher order trajectory (ho)  

Figure 4 illustrates the difference between the higher order (ho) and a linear quadratic 

(lq) motion preset: the constraints of the drive train (marked in red, dashed) are used 

and the jerk, which causes an excitation of the plant, is reduced. This leads to higher 

possible dynamics. 

3.2. Feed-forward and closed-loop control 

A model-based feed-forward control structure allows for reduction of tracking errors 

without having an influence on the stability. An inverse feed-forward control leads to 

small error - in case of an ideal model to zero tracking error. The inverse of the transfer 

function (6) 
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can be transformed into time domain. This leads to the feed-forward law: 
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The better the system description matches the real plant and the less distorsions 

appear, the smaller is the tracking error.  
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Figure 5: Results of different control structures 

As mismatches occur due to the inaccuracy of the model and parameter changes, a 

closed-loop controller is needed in order to reduce the error further. Even though 

closed-loop control structures differ in complexity, the structural problem of remains: 

The feedback controller cannot anticipate the error. Even though there are many 

promising algorithms, the simplicity of tuning makes PID-control remaining the standard 

control in industrial applications. In the following section we show how an iterative 

learning (open-loop) controller can reduce the tracking error. A proportional controller is 

introduced as example for a closed-loop control. 

4. Iterative learning control 

The idea of ILC goes back to 1967 when Garden /9/ filed the first patent on learning 

control. Independently of him, Arimoto independently developed an ILC in 1984 /10/. 

Iterative control schemes can be classified into two different classes depending the use 

of the model information /11/: Gain-type ILC process the feed-forward signal on the 

basis of linear operations on the error without taking the system dynamics into account. 

This yields convergence if the gain is properly chosen. Model-type ILC was introduced 

by Amann /12/ and makes use of an a priori known system dynamics which results in 

rapidly converging solutions with less parameterization effort. Unfortunately the 

“inverse problem” has to be solved, which, depending on the system may be ill-posed. 



Several investigations have been carried out with the aim to implement ILC algorithms 

on stationary machinery, in particular on injection moulding machines. Havlicek and 

Alleyne /13/ were the first who applied an iterative control algorithm to an injection 

moulding machine (IMM). They applied a gain-type ILC to the injection unit of an 

injection moulding machine that resulted in an improved tracking control compared to a 

conventional PI-controller. Gao, Yang and Shao /14/ applied a model-type ILC to an 

IMM using a model derived from open-loop step answer identification. They achieved 

good results by varying the error-weighting matrices. Dynamic restrictions of the 

process have not been taken into account.  

The presented ILC shows how the usage of a displacement-controlled clamping unit 

can be improved using a trajectory planning in combination with a model-based feed-

forward control and the ILC algorithm proposed by Amann /12/. The latter is extended 

considering the saturation of the control signal. 

4.1. Learning law 

In chapter 3 we derived a control structure based on the system description in 

chapter 2. In the ideal case of an exact inversion 
1−

SG  of the nonlinear plant a feed-

forward signal 
1−⋅= SGwu  can be derived for a given trajectory 

)( 1×N
w . In this case 

there is no tracking error ( wx ≡ ). Due to the inexact description of the system the 

inversion 1−*SG leads to a non-ideal feed-forward signal 1−⋅= ** SGwu  for the first 

cycle and a nonzero tracking error: 

0≠−=⋅−= xwGuwe S*  (18) 

Figure 6 shows a scheme of the ILC applied to the plant. 

 

Figure 6: Control structure with ILC and closed-loop control 

We will reduce the tracking error 
)( 1×N

e consecutively by iterative learning. To do so, we 

calculate the feed-forward signal of the next cycle according to 
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with the learning factor η and 
1+∆ ju . The latter represents an unknown supplement 

which minimizes the error e . We assume e  to be small; consequently it can be 

described by a linear transfer function in time domain by a linearization of the greatly 

nonlinear plant along the path using the lifted system representation /15/: 

( )
( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
43421

M

44444444 344444444 21
L

MOMMM

L

L

L

43421

M

1

1

1

1

1

1

1

1

1

2

1

0

210

0221202

001101

00000

2

1

0

1
+∆

+

+

+

+

+

+

+

+























∆

∆

∆

∆

⋅























+⋅≈























+ jsj u

j

j

j

j

M

ssss

sss

ss

s

Sj

x

j

j

j

j

Nu

u

u

u

NNfNfNfNf

fff

ff

f

Gu

Nx

x

x

x

)(

)(

)(

)(

,,,,

,,,

,,

,

)(

)(

)(

)(

 (20) 

whereby the lifted system matrix sM contains the time-variable impulse responses 

),( lkfs  with Nlk ≤≤≤0 . k indicates the discrete time step of each impulse response 

and l the starting time step. The impulse responses are created for the closed-loop 

simulation model in figure 6. 

The supplement 
1+∆ ju is to be calculated on the basis of a cost criterion J so that 

{ } 0

1

1

1

1

=
∆∂

∂
=

+

+
+

∆ + j

j

j
u u

J
J

j

min  (21) 

For the clamping unit of the injection moulding machine the new tracking error 

1+∆⋅− js uMe  has to be minimized. Hereby 
2

1+∆+ jj uu minimizes the control signal 

and 
2

1+∆ ju guarantees that the minimum is unique. Saturation constraints of the feed-

forward signal are considered by 
2

1 jBjj uuu −∆+ + where 
jBu  is the constrained 

signal of ju . This leads to the optimality-criterion 
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with the weighting-factors 
1
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2

q ,
3

q and the quadratic norm 
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⋅ . In matrix formulation 
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with the weighting matrices EqQ ii
⋅=  with the unit matrix 
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Setting the derivative to zero leads to:  
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If equation 24 is resolved by 
1+∆ ju  this leads to the learning function: 
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The feed-forward signal for the next cycle results from the substitution of (25) in (19). 

5. Results 

This chapter shows some results of the iterative learning controller applied to the 160 

ton clamping unit of the injection moulding machine which is described in chapter 2. 

The tests are carried out on a prototype controlled by a dSPACE environment. The test 

cycle is a typical “dry-cycle”, as specified in EUROMAP6. The ILC calculation is 

performed with MATLAB in between the cycles. Model-based motion presets with 

different dynamics are examined with an open-loop iterative controller structure (Fig. 9, 

structure B) and compared to the results of a closed loop iterative structure without ILC. 

0 30 60 90 120 150

trial

0,001

0,01

0,1

1

e
r r

o
r 
Σ

e
2

0 0,2 0,4 0,6 0,8 1 1,2 1,4

time t

0

-0,05

-0,1

-0,15

-0,2

-0,25

-0,3

p
o
s
it
io

n
 x

m

s

0 0,2 0,4 0,6 0,8 1 1,2 1,4

time t

0

5

10

-5

-10

s
ig

n
a
l 

u

  V

s

cl-loop, no ILC

open loop, ILC

ILC parameters

q1=1e-6; η=0.3

q2=1e-4; umax=10V

q3=1e-4;

0 0,2 0,4 0,6 0,8 1 1,2 1,4

time t

0

0,01

0,02

0,03

0,04

-0,01

e
rr

o
r 

w
-x

i

m

s

trajectory

1. cycle

5. cycle

150. cycle

 

Figure 7: Results for 1.4s cycle (open-loop iterative control) 

The iterative learning controller runs stably and reduces the integral position error more 

than 2 decades within 10 cycles. Figure 7 shows the exponential reduction of the error 



over the cycles. Around the position of -0.1m the ILR is not able to reduce the 

oscillating error any further. On the one hand this is caused by the actuator which limits 

the plant input. On the other hand the bad damping in this area (see figure 2) and the 

changing eigenfrequency cause that the linearized model does mirror the real system 

accurately enough. The drive system’s limitation of the drive system becomes even 

more obvious if the dynamic is increased any further.  
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Figure 8: Results for 1.2s cycle (open-loop iterative control) 

Figure 8 shows, that the controller runs stably despite not complying with the limit of 

VuB 10±= . Here another challenge can be identified: A maximum utilisation criterion 

requires a trajectory-planning closest possible along the drive systems restrictions. In 

contrast to this an a priori unknown reserve for the control signal should be considered 

to overcome disturbances (e.g. wrongly estimated parameters or parameter changes). 

A direct comparison of the two structures shows the potential of the iterative learning 

controller (figure 9).  
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Figure 9: Comparison: closed-loop control (A) to ILC open-loop (B) for two different 

cycle times 

6. Conclusion 

An approach has been presented which shows the potential of a systematic, model-

based approach to recall the maximal usage of a highly nonlinear plant that runs a 

repetitive process with a minimal error in order to avoid the struggle of tuning closed-

loop controllers. Based on a mathematical description of the plant, motion presets are 

generated which lead to an increase of the system dynamics and illustrates why the 

“trial and error” method does not lead to the expected results. The improvement is 

realised without the use of additional components. Additionally it points out the 

bottlenecks.  

A model-based open-loop iterative learning controller is presented that significantly 

reduces the absolute position error in comparison to similar closed-loop structure by 

using a standard proportional controller with load-pressure feedback. As the ILC works 

stably by definition it is able to recall the maximum dynamics in contrast to conventional 

controllers cannot due to stability reasons. Limiting factors are the systems limitations 

and the model accuracy which determine the residual error. 

Issues persist, however with the accuracy of the model description particularly if small 

changes of given values cause model changes. As a consequence these cannot 

sufficiently be described by the linear supplement of the elevated system description. 

The challenge is to develop appropriate models with a good balance of complexity and 

accuracy. 



Future work on learning controllers and the development of more sophisticated 

nonlinear control strategies is continuing. 
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8. Nomenclature 

A area m2 

a,b coefficients - 

Ch hydraulic capacity m5/N 

e error m 

F force N 

G plant description (time/ frequency domain)  

i,k,l indices - 

J optimisation functional - 

K motor gain 1/Vs 

kd friction coefficient N 

M momentum Nm 

Ms lifted system matrix - 

n drive speed 1/s 



p pressure bar, N/m2 

q,Q weighting factor /matrix  

Q1 pump flow l/min, m3/s 

s position (movable platen) m 

t time s 

T1 motor time constant - 

u voltage V 

V1 pump volume dm3, m3 

w given trajectory  

x position (crosshead) m 

η learning factor - 

 


