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Abstract 

In this paper a control structure and joint trajectory planning algorithm are presented for a 

type of kinematically redundant manipulator actuated by joints with pairwise antagonistic 

pneumatic muscles. The used muscles and the resulting behavior of a single manipulator 

joint featuring antagonistic muscles in a symmetric configuration are characterized.  

The joint limits resulting from the limited deflection of the pneumatic muscles can present a 

problem for the planning of the reference joint trajectories. An algorithm is presented to en-

sure the joint limit avoidance in the redundancy resolution of the presented manipulator.  

Beside the distinct limits, the pneumatic joint actuation also results in a hysteretic behavior, it 

is shown that in this case the hysteresis can be described by a Preisach hysteresis model. 

The resulting hysteresis model allows the construction of a model-reference following con-

troller, with a model control loop, designed for good tracking performance and a disturbance 

rejection loop optimized for suppression of disturbances. Experiments confirm the improve-

ment in tracking control as compared to the system solely controlled by a feedback regulator. 
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1. Introduction 

Pneumatic muscles have matured to become reliable, highly durable low cost actuators. Due 

to favorable characteristics like high power-to-weight ratio and their inherent compliance, 

they are well-suited to be applied to construct light-weight versatile robots /1/, /2/. 

1.1. Muscle characteristics 

Most of the pneumatic muscles in use today are based on the McKibben muscle, consisting 

of an air proof so-called rubber bladder which is surrounded by a sheath of inextensible fi-

bers and closed at both ends by caps /3/. When pressurized, the bladder increases in vo-



lume, resulting in an expansion in radius and an axial contraction due to the unextensible 

sheath. When attached to an appropriate bearing the pressurized muscle is able to exert a 

pulling force. When pressure is released, only the relaxation of the deformed muscle slowly 

relaxes the muscle, allowing it to passively return to its original shape. Therefore, like their 

natural counterparts, pneumatic muscles can only exert pulling forces and have to be used in 

an antagonistic setup. One of the main challenges in the application of pneumatic actuators 

is their difficult controllability, as the available muscles exhibit a wide range of nonlinear ef-

fects. Apart from omnipresent creep, their deflection, which can reach values of up to 25% of 

the muscle length in the unloaded case, is dependent upon the applied air pressure, the 

force, as well as the velocity of change. Due to frictional effects in the air path and the mus-

cle material, the deflection exhibits an asymmetrically hysteretic behavior, see filled areas in 

Figure 1, which prohibits the precise open loop control of single muscles. The manufacturer 

guarantees a contraction hysteresis of at most 3% of the nominal length. The deflection error 

of the muscle due to the hysteresis can thus reach values of over 10% of the possible stroke.  

The gray contours in Figure 1 depict the load force and contraction loops measured at dif-

ferent air pressures at a frequency of 0.1 Hz, acquired for a pneumatic muscle of type FES-

TO DMSP-10-150N. To derive a description for the mean relation between contraction and 

load force for a given air pressure, the mean force for a certain length is calculated from the 

flanks of the loops and displayed as a colored line. The resulting mapping is given in  

Figure 2. 

Figure 1: Hysteretic behavior of the isobarical-

ly loaded muscle. Contraction forces and dis-

placements are denoted with a negative sign. 

Figure 2: Static characteristics of used 

muscle type. 

An abundance of approaches has been suggested to model the resulting mapping /4/. Bob-

lan et al. compare several possible approaches to describe the static relation between con-

traction, pressure and muscle force /5/. He concludes that the static relation of a single mus-

cle can be described with best accuracy by a sine model, consisting of a superposition of 



linear and sinusoid components. Therefore, a sine model approach was chosen in our inves-

tigations and parameterized using the measured data displayed in Figure 2. Consequently, 

this model was inverted to provide the necessary air pressure for an admissible combination 

of muscle contraction and muscle force. 

1.2. Manipulator setup 

Figure 3 (left) depicts the used manipulator structure as introduced by Schmitt et al. in /1/. A 

single stage consists of a pair of antagonistic pneumatic muscles of the type DMSP-10-

150N, possessing a working length of 150 mm and a muscle diameter of 10 mm. From the 

module design depicted in Figure 3 (right) the relation between the joint angle and the cor-

responding effective actuator lengths AL  and BL  can be derived: 
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From the kinematics of a single segment in (1 .1) and the static mapping relating the air 

pressure and the applied force to the resulting mean contraction in Figure 2 derived from the 

measurements described in Section 1.1, the inverse mapping can be calculated which pro-

vides the necessary air pressures in each muscle for a combination of desired joint angle 

and individual muscle forces. The resulting feedforward control structure is displayed in Fig-

ure 4. The described feedforward structure compensates the static nonlinear relations be-

tween the mean values of the contraction force and displacement to the pressure.  

Depending on the combination of the muscle forces, drive torques as well as antagonistic 

torques will be produced. The antagonistic torques do not result in a motion as they merely 

cause a prestress in both actuators, that can be used to vary the joint’s stiffness /6/. In the 

following, the external force input is only used to generate a prestress in the system. 

Figure 3: Manipulator structure (left) 

and kinematic setup of a single mani-

pulator segment (right). 

Figure 4: Feedforward joint angle control structure. 



In the antagonistic setup the same effects causing hysteretic behavior in a single muscle will 

result in hysteresis between the desired and the measured joint angle. Due to the symmetric 

setup of the joint actuators the resulting hysteretic behavior will consequently be symmetric. 

2. Redundancy resolution scheme for muscle-actuated manipulator 

The manipulator segments are combined in a serial fashion to form the manipulator. As soon 

as the number of segments exceeds the number of degrees of freedom necessary for a spe-

cific task, the structure possesses redundant degrees of freedom. For a serial manipulator 

the direct kinematic problem, connecting the joint positions to the pose of the end-effector 

( )x g q , has a unique solution. For kinematically redundant manipulators however, the in-

verse mapping is not unique as an infinite set of possible joint configurations q  can be found, 

that result in the same pose of the end-effector ( )q h x , an example is shown in Figure 5.  

 

Figure 5: Different configurations of the kinematically redundant manipulator leading to the 

same pose of the end-effector. 

As no closed-form solution exists, the inverse kinematic problem can be only be solved nu-

merically, in order to choose one of the infinite number of possible solutions some addition 

tasks or performance criteria have to be defined. As the redundant manipulator is actuated 

by pneumatic muscles, their finite range of deflection has to be taken into account. With the 

maximal contraction length of 25% of its length and the geometric properties of the structure, 

this leads to a controllable angle range of i30 q 30     . One important issue when calcu-

lating the joint angles from the set of solutions of the inverse kinematic problem is therefore 

to keep the desired joint angles as small as possible, e.g. by looking within for the solution 

that minimizes the function TJ  q q . 

A simple optimization for small joint angles over the whole structure may still lead to solutions 

in which single angles exceed the admissible joint limits. In Figure 7 (solid lines) the solution 

of the inverse kinematic problem for a given path of the end-effector is shown. The path for 



the end-effector is defined in 5 DOF in Cartesian space. A manipulator with 6 joints conse-

quently possesses one redundant DOF. The minimization of the joint angles for a given pose 

leads to solutions in which the cost function TJ  q q  is minimal and most of the joint angles 

are quite small at the expense of the angle shown in red, to an extend that the desired angle 

becomes larger than the largest possible angle.  

Therefore, the joint limits mentioned above have also to be taken into account in the redun-

dancy resolution scheme. A cost function which allows to minimize the joint angle, while re-

garding the joint limits is the following function: 

max
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(2 .1)

The weight grows towards infinity as the angle approaches the joint limits. Therefore, joint 

angles growing towards the joint limits will be severely punished. The value of the weight 

function is shown in Figure 6. 

 

Figure 6: Weighting function over the range 1 rad; 1 ra d    . 

The search for an optimal joint vector q  that minimizes the cost function (2 .1) under the 

constraint ( )x g q  is conducted via convex optimization. This task is a type of constraint 

minimization problem that can be solved by using Lagrange multipliers  . To combine both 

constraints into one equation, the following Lagrangian function can be used: 

T( , ) f( ) ( ( ) )     q q g q x , 
(2 .2)

with the unknown row vector T , which defines a linear combination of the constraints. A 

local extremum of the Lagrangian function can be found using a gradient descent approach 

( , ) 0.  q  
(2 .3)



An efficient method to solve the resulting nonlinear system of equation is the Newton-

Raphson-method; the zeros X  of the system ( ) 0F X  are calculated through the following 

linear iteration formula: 

p p pJ ( ) ( ) 0,  F X X F X  
(2 .4)

p 1 p p.   X X X
 

(2 .5)

Starting from vector 0X  the vectors p 1X  are iterated until the absolute value of the change 

of the solution vector is smaller than the stopping criteria  . The system of equations in (2 .3) 

can be split into two parts, one for the vector q , the other for  : 
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The first part is responsible for the optimization and the second for the constraints. Both parts 

can be solved using the Newton-Raphson-technique. The only difficulty is to calculate the 

Jacobian; the equation (2 .8) represents the linear system that has to be solved. 1J  and 2J  

are the Jacobian of the 1F  und 2F  
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(2 .8)

To calculate the Jacobian matrix 1J , it is written as two separate matrices: 

1 1,1 1,2[ , ] ,
  

     
1 2J J J F F

q  

(2 .9)

Both submatrices are derived through inspection of equation (2 .7) 
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The same approach for 2J  results in 

2 g( ) , 0   J J q
. 

(2 .11)

With these submatrices the iteration formulation is at hand 
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Figure 7 shows two inverse kinematics solutions for a movement of the end-effector of a six 

DOF manipulator along a path defined in 5 DOF in Cartesian space. The kinematic redun-

dancy is to find consistent joint trajectories that minimize specific cost functions. Shown in 

solid lines are the manipulator joint angles resulting from an unweighted minimization of the 

joint angles (solid lines). The simple minimization still allows a violation of the joint limits, 

happening for the angle shown in red. The minimization of the angles weighted with (2 .1) is 

shown in dashed lines. As can be seen, the use of the weight function ensures the com-

pliance of the planned trajectories with the joint limits. 

 

Figure 7: Planned trajectories for the manipulator joint angles resulting from an unweighted 

minimization of the joint angles (solid lines) and a minimization of the weighted angles 

(dashed).  

3. Preisach hysteresis model of the antagonistically actuated segment 

A variety of hysteresis models have been applied in an attempt to model the inherent hyste-

retic behavior of pneumatic muscle actuators. Minh et al. successfully demonstrated the ap-

plication of a Maxwell-slip-model for the description of the contraction length to force beha-

vior for a single muscle /7/, as well as for the torque hysteresis for the movement in a joint 

driven by an antagonistic muscle pair /8/. While the described modeling results provide a 

good reproduction of the behavior of single muscles, no control approach is presented that 

can be extended to incorporate the control of a joint driven by an antagonistic muscle pair. 

Attempts have been made to apply classic hysteresis modeling approaches, like Preisach 

models, to the modeling and control of pneumatic muscles and pairs of pneumatic muscles 

/9/, /10/. The results obtained in these works provided only limited modeling success, as an 

important necessary precondition as given by Mayergoyz /11/ to ensure the applicability of a 

Preisach-approach, the congruency condition, is not fulfilled by the asymmetric hysteretic 



behavior of a single pneumatic muscle. Therefore, the models derived in the mentioned 

works were only able to reproduce major loops similar to ones used in the identification 

process of the model. The main potential of a Preisach model, the ability to model the minor 

loop behavior and the model inversion for an approximate compensation of the hysteresis 

could therefore not be exploited.  

Mayergoyz recognized that a hysteresis nonlinearity can only be represented by a Preisach 

model if it fulfills the wiping-out property and minor-loop congruence property conditions /11/. 

It is shown in /12/ that the use of the presented symmetrical antagonistic setup featuring a 

pneumatic muscle pair with a compensation of the static mean nonlinear force-contraction-

pressure characteristics results in a symmetrical hysteresis behavior, which fulfills all neces-

sary conditions to allow modeling by a Preisach model. 

3.1. Preisach model of hysteresis 

The Preisach hysteresis model was first developed by Preisach in 1935 in an attempt to 

model the physical mechanisms of magnetization /13/. Although it was first regarded to be a 

physical model of hysteresis, the Preisach model turned out to be a phenomenological model 

that has mathematical generality and is applicable to phenomena from many disciplines. A 

rigid mathematical generalization has been presented by Mayergoyz, who also determined 

the necessary conditions for the applicability of such a model /11/. 

The simplest type of hysteresis operator ˆ  can be represented as rectangular loops in the 

in-/output-plane, as shown in Figure 8 (left). Its output switches between 1  and 1  de-

pending on the initial output and the history of past inputs, representing a local memory. In 

addition to the set of operators ˆ , with   and   corresponding to the “up” and “down” 

switching values of the input u(t) , a weighting function ( , )    has to be considered, which is 

called the Preisach function and can be identified for a given system. The resulting Preisach 

model with the system output f(t)  is then given by  

 ˆf(t) ( , ) u(t) d d .
       

 (3 .1)

 

Figure 8: An elementary hysteresis operator ̂  (left) and Preisach plane (right). 



The switching values are subject to the relation max minu u      with maxu  and minu  being 

determined by the system's physical properties. The feasible combinations of   and   form 

the triangle T  as displayed in Figure 8 (right). Therefore, the output of the Preisach model is 

determined by integrating the product of the weighting function ( , )    and the operator ˆ  

over the triangle T . 

The model output is dependent on the extremal values in the history of the input sequence 

u(t)  as depicted in the example in Figure 9. The set of dominant maxima and minima deter-

mines the output of the system. Due to the wipe-out property of the Preisach model, input 

values larger than past dominant maxima or smaller the past minima wipe out the effects of 

the older extrema. The dominant extrema are marked in the input sequence depicted in Fig-

ure 9 (left). At any instant the Preisach plane can be divided into two regions, the one in 

which the relay operator outputs are 1 , marked dark gray in Figure 9 (right), and the one in 

which the relays' outputs are 1 . Both areas are separated by a descending staircase func-

tion, the corners are determined by past reversal points in the input sequence. 

 

Figure 9: Input sequence with dominant, as well as wiped out extremal values (left) and 

Preisach plane with correspondingly activated elemental operators (right). 

After applying the identification algorithm presented by Mayergoyz to determine the Preisach 

function from first order descending curves /11/, the Everett map E  is defined /14/, which 

contains the change of the output value f(t)  as a function of   and  : 

E(u ,u ) .f f    
 

(3 .2)

Since     during the measurement, only one half of the map can be constructed by mea-

surements. The missing values are given by f f   . Thus the value of f  can be calcu-

lated for any single combination of   and  . 

With the sets of past dominant maxima H  and dominant minima L , the Preisach model out-

put can then be expressed for any given sequence of inputs u(t)  by 
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(3 .3)

with minf  being the output corresponding to minu u  (all relays set to 1 ).  

For a given Preisach model a computationally compact inverse can be derived from (3 .3), if 

the first-order curve data surfaces f  are strictly monotonically increasing with respect to the 

parameters   and  . This will result in the inverse of the Everett map G , given by  

G(f ,f ) u u    
 (3 .4)

With this mapping the unknown input u(f(t))  to achieve the desired output f(t)  can be com-

puted using 

   
i 1 i k

k 1

min d d d
i 1

u(f(t)) u G F ,F G f(t),F






  
, 

(3 .5) 

with dF  being the set of past output extreme values.  

3.2. Identification and feedforward compensation 

The hysteretic behavior of the system was identified by producing a series of first order des-

cending curves. An input signal was chosen to lead the output along an ascending branch of 

the major loop, at distinct values, chosen as suggested in /15/, the input reverses producing 

a descending curve in the input-output-diagram, terminating at negative saturation. 

Due to the symmetric hysteresis loop, it is apparent, that the relation ( , ) ( , )       is va-

lid. Therefore it is obvious, that for the identification of ( , )    also the first-order increasing 

curves could have been used which are attached to the limiting descending branch. 

After the derivation of the inverse Preisach model, the desired joint angle is fed into the in-

verse model whose output serves as the input to the feedforward structure in Figure 4. The 

resulting match between desired and measured angle is shown in Figure 10. It can been 

seen, that the inverse model allows a significant reduction of the width of the resulting hyste-

resis between actual and desired angle and will, in combination with an appropriate feedback 

controller, allow a very precise control of the manipulator segment. 



 

Figure 10: Open-loop hysteresis compensation using inverse Preisach model measured with 

a single manipulator stage. 

4. Controller design 

To ensure precise tracking in the presence of disturbances, creep, and model uncertainties, 

it is imperative to complement the feedforward compensator with a feedback controller. 

The idea of the control scheme, depicted in Figure 11, is to combine the feedforward hyste-

resis compensator and a model-following controller (MFC) based on the nominal dynamic 

model to implement an effective tracking controller.  

The feedforward compensator is responsible to provide the adequate value to compensate 

the static hysteresis as described in Section 3.2. The fundamental idea behind the model-

following controller structure is to separate the tracking control from the disturbance rejection 

problem in the controller design, by including a plant model in the model control loop which is 

controlled by the tracking controller. As the model control loop is disturbance free, the track- 

 

Figure 11: Control structure with feedforward hysteresis compensator and a model-following 

controller (MFC) consisting of model and disturbance rejection loop. 

ing controller can thus be designed to provide good tracking performance. The output of the 

plant model serves as reference value to the disturbance rejection loop containing the actual 

plant, providing a filtered reference. The main advantage of the setup is that the inverse plant 

model, which is usually needed for feedforward control, does not need to be calculated, as all 

the signals in the control loop can be calculated with the direct model. The controller output 



modu  in the model loop, which is necessary to produce an output of mod  is known. The out-

put of the tracking controller provides a feedforward control signal which compensates the 

dynamic behavior modeled in the previous loop and is added the output of the disturbance 

rejection controller. If the plant model reflects the exact behavior of the actual plant, the plant 

will be driven to the desired values by the feedforward signal alone. As there are always 

modeling errors and disturbances acting on the actual plant, the disturbance rejection con-

troller has to compensate those effects. Since the controller in the model loop provides for 

the tracking performance, the controller of the second loop with the actual plant can be laid 

out solely for good disturbance rejection. Due to the fact that there is only a feedforward con-

nection between the loops, the stability of the control system is not compromised, as long as 

the stability of the individual control loops is ensured. For more information regarding MFC 

see Osypiuk et al. in /16/. 

Due to the hysteretic behavior of the plant, its gain is dependent upon the current amplitude 

and direction, while it shows a similar dynamic behavior over the range of possible joint an-

gles. A typical step response along with an approximation of the dynamic behavior as a 

second order system with two real poles at s 23rad / s  is shown in Figure 12.  

The gain of the nominal plant model is derived from the in-/output characteristic as shown in 

Figure 14. With this model a PI controller is designed with whose zero one of the poles is 

cancelled, while the gain is set to provide for a damping of D 1/ 2 , as shown in Figure 13. 

Due to the nonlinearity induced by the modeled hysteresis, the response of the full model 

lags behind the response simulated with the same controller and the linear approximation. 

The hysteresis nonlinearity induces an uncertainty in the gain parameter which has to be 

taken into account in the controller design for the disturbance rejection loop. As shown in 

Figure 14, although it induces a parametric uncertainty, the extremal values of the gain can 

be derived from the in-/ouput characteristic, which defines a bounding sector. Along with the  

Figure 12: Normalized step response of the 

joint angle plant 

Figure 13: Step response of the controlled 

model with simulated hysteretic behavior 



parameter uncertainty, an unstructured uncertainty bounded by the function in Figure 15 is 

taken into account in the controller design process, to account for higher frequency influ-

ences and modeling errors. To ensure a good disturbance rejection, especially for stationary 

and low frequency disturbances acting at the plant output, the sensitivity function is weighted 

accordingly in the H∞-controller design. The disturbance rejection controller is then derived as 

a robust controller for the uncertain open-loop plant model via the µ-synthesis, as in /17/.  

Figure 14: Schematic of the gain approx-

imation from the hysteretic characteristics. 

Figure 15: Selected function bounding 

the considered unstructured uncertainties.

Figure 16 shows a comparison of the step responses of the controlled joint angle. It can be 

seen, that the system's tracking dynamics clearly benefits from the model-following control 

design. While showing comparable overshoot, the output’s rise time is significantly reduced 

by the combination of inverse Preisach feedforward compensation in combination with the 

reference model following control loop. The disturbance rejection controller, which can be 

designed specifically for this purpose, allows a significant reduction of the influence of high 

frequency noise and load fluctuations resulting from stick effects in the manipulator joints. 

 

Figure 16: Step response experiment performed with a single manipulator stage controlled 

by a single loop PID controller (green) and by model-following controller (red). 

   



5. Summary 

In this paper the control architecture for a manipulator actuated by pneumatic artificial mus-

cles is presented. After a brief description of the used muscle type and their pressure-force-

length-relations, these characteristic are used to form a feedforward structure for the control 

of a single pair of antagonistic muscles in the manipulator structure.  

Due to the symmetric setup of the muscles in the used manipulator, the feedforward struc-

ture, the nonlinear mean relation of the muscles compensate each other in the unloaded 

case resulting in a symmetric hysteresis of the open loop plant between desired and meas-

ured joint angle. It is shown, that this symmetric hysteresis nonlinearity fulfills all necessary 

conditions to describe it by a Preisach model approach. A Preisach model is identified, its 

inverse is used for an approximate feedforward compensation of the hysteresis nonlinearity. 

The actuation by pneumatic antagonistic muscles limits the accessible angles in each joint. 

The used manipulator is designed to construct highly dexterous versatile robots with kine-

matic redundancy. To allow precise path tracking of the kinematically redundant manipulator 

in spite of the limitations of the realizable joint angles, these limitations have be taken into 

account already in the trajectory planning and redundancy resolution. It is shown, that a sim-

ple joint angle minimization is not sufficient to prevent the violation of the possible joint an-

gles. Therefore, a redundancy resolution scheme is presented that ensures the joint limit 

avoidance through optimization with a weighting function. The joint trajectories derived from 

the redundancy resolution are the used as reference values for the individual joint controllers. 

The joint controllers are realized as a model-following controller, the direct and inverse Hys-

teresis model is used to control the model-control loop, its controller output is fed into the 

disturbance rejection loop as a feedforward term. The controller of the model loop is de-

signed for good tracking performance, while the disturbance rejection controller is optimized 

for good disturbance rejection in the presence of disturbances and parametric uncertainties. 

Measurements are presented to demonstrate, that the resulting controller outperforms com-

parable single loop controllers in experimental investigation. 
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7. Nomenclature 

  Joint angle 

AL , BL  Muscle lengths 

ur , or , ul , ol  Elemental segment link lengths 

x , q  Cartesian space and joint space coordinates 

  Lagrange multipliers for the optimization problem 

X , 
0X , …, pX , 

p 1X  

Vector of zeros of the optimization problem 

u  Desired angle input sequence 

f Actual angle output sequence 

 ,   local extremal values of the joint angles for hysteresis model 

ˆ , ( , )    Hysteresis operator and weighting function of hysteresis model 

 


