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Abstract 
In this paper is presented a simple fault detection and diagnosis (FDD) method. This 

model based method is especially suitable for embedded systems because need for 

computing power is minimal. The static model scheme is utilized to model inherent 

system nonlinearities in the method. Model is obtained during system normal operation 

after the explanatory variables are specified. Separate fault learning is not need. The 

introduced method is applicable for all the systems where feedback control is utilized 

and some of system's internal variables are measurable. 

In this method the faults can be detected through detecting internal variables operation 

point changes. These operation point changes are consequences of the faults since 

feedback control tries to compensate them. 

Eight typical faults (leakages, friction changes and backlash) for a process control 

valve were simulated in the process control valve fault simulator and proposed method 

tested. The results indicate that all the faults can be detected and diagnosed before 

severe impact to control performance of the system. Some of the faults were tested 

also in the real process control valve test bench in the laboratory. The results in the 

real environment are consistent with the simulator results. 
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1. Introduction 
Predictive maintenance is one of the tools to increase productivity in the process 

industry by decreasing unwanted shutdowns and loss of product quality. A process 

control valve as the most usual final control element in the control loop has huge 

potential to support predictive maintenance. For this reason it has to have fault 

detection and diagnosis capabilities. Currently intelligent valve controllers can detect 

some symptoms or faults, but not diagnose them. Thus there is need to research 

methods to detect and diagnose specified control valve faults.  



Active research has done in last years in the field of soft computing diagnostic methods 

for the control valves, like neural networks (e.g. /1/, /2/, /3/, /4/,) and fuzzy systems 

(e.g. /5/, /6/, /7/, /8/, /9/). These soft computing methods are applicable for the software 

applications on the distributed control system level, not for the field device level, 

because they require much computing power. Therefore research related to methods 

more suitable for embedded systems such as intelligent valve controllers are needed. 

2. Fault simulator 
The pneumatic process control valve fault simulator presented by author in the 

previous paper /10/ gives the base for this research. Utilizing the simulator different 

fault cases can be simulated, consequences analysed and data generated for fault 

detection and diagnosis research. 

The fault simulator was essential to realize because implementing all the faults to real 

environment is not possible in means of fault repeatability and without interfering 

original system performance.  

The simulator consists of the following models: an intelligent valve controller (nozzle – 

flapper and spool valve), a pneumatic spring return cylinder actuator, a segment type 

process control valve, medium flow in the process pipe and the flow control loop as 

seen in Figure 1. The models are from first principals but fitted with nonlinear fitting 

parameters such as position related spring coefficients. A physics based model 

scheme was chosen to make fault modelling and location possible. Some relevant 

faults for each component are modeled to make fault impact simulations possible. 

These faults are presented with red arrows in Figure 1. 

 

Figure 1: Intelligent control valve in flow control loop and modeled faults 

The derived models have been verified with measurements and the modeling error is 

found to be acceptable for fault simulations. Some typical faults have been simulated in 
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different use cases (high cycle, flow control and off-line performance test) and impacts 

to the flow control loop internal variables and control performance analyzed. 

2.1. Fault detection and diagnosis method 
In this introduced method the faults can be detected through detecting internal 

variables operation point changes. That was observed analysing behaviour of the 

internal variables and system internal transfer functions during the fault simulations. 

Operation point shifts are consequences of the faults since feedback control tries to 

compensate them. All the internal variables before the fault impact location in the 

internal variables chain are part of compensation done by the controller as seen in 

Figure 2. That mechanism enables fault localization by detecting the last internal 

variable affected by the fault. Size of operation point change is proportional to fault size 

as seen also in Figure 2. 

 

Figure 2: Prestage pressure leakage effect on internal variable operation points. The 
variables in figure are (from left to right) valve setpoint, spool setpoint, control, flapper 

position, net mass flow to prestage volume, prestage pressure, spool position, net 
mass flow to cylinder, cylinder pressure, actuator torque, valve position, differential 

pressure over valve and valve flow 

In Figure 2 can be seen how the internal variable operation points are shifted by the 

fault. The fault considered in this case is prestage pressure leakage presented in 

Figure 3. With this fault feedback controller compensates leakage by moving the 

flapper closer to the nozzle in the nozzle-flapper system to decreases mass flow 

though the nozzle to maintain required prestage pressure and spool valve position. 
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Figure 3: Nozzle-flapper schematics including leakage 

Also other system input variables (e.g. set point, supply pressure, temperature) than 

the faults can affect to the internal variables operation point. Therefore relations 

between these other system input variables and the internal variables have to be 

modelled to separate the effects of the input variables from the faults. A pneumatic 

control valve is highly nonlinear system related to the system input variables. That can 

be seen from Figure 4 where effect of supply pressure and valve set point to the 

flapper operation point is presented. In this introduced method nonlinear relations are 

modelled through multi-variable histograms.  

 

Figure 4: System nonlinearities 

2.2. Multi-variable histogram models 
Multi-variable histogram models are simple statistical nonlinear models of variable 

relations. Advantages of multi-variable histogram models are simplicity, easy learning 

and nonlinearity /11/. 

Multi-variable histograms models are based on schematics where system operation 

point is taken account within operation point space as seen in Figure 5. In the figure 

the system input variables (Valve Set Point and Supply Pressure) define operation 
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point space for this observed variable. In the figure one bin represents one operation 

point of the system. In this example operation point space is dived to the 64 bins. 

 

Figure 5: Operation point space of the observed variable 

Contrary to many other modelling schemes multi-variable model output is distribution 

(histogram) as seen in Figure 6, not a single value. This means together with operation 

point space modelling scheme, that unique histogram is located in every bin in 

operation point space. 

When effects of other input variables than faults are taken account, faults are seen as 

distribution changes as presented in Figure 6. In the figure, flapper position distribution 

is shifted by prestage pressure leakage. 

Reference histogram is model where forgetting factor is high. Therefore this model is 

adapted to normal operation of the system. Reference model can be obtained also 

from the simulation results. When it is obtained during normal operation, faults are not 

allowed to be present in the system. 

 

Figure 6: Histogram models in one operation point 
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It is essential to research which input variables are the dominating variables for the 

observed variables. Only the dominating variables are reasonable to include to the 

model to keep model structure as simple as possible. In this case, the dominating 

variables for each observed variable are seen in Table 1. These dominating variables 

were searched by information entropy functions. 

Internal Variable Explanatory input variables 

Spool SP Valve SP  
Control Temperature Valve SP 

Flapper Position Supply Pressure Valve SP 
Prestage Pressure Supply Pressure Valve SP 

Spool Position Valve SP  
Cylinder Pressure Valve SP  
Valve Load Torque Valve SP  

Valve Position Valve SP  
Flow Valve SP  

Table 1: Explanatory input variables for observed variables 

As noticed before, the model outputs are distributions. This makes possible to use 

statistical approach for alarm limit generation. In the introduced FDD method, alarm 

limits are generated from reference model distributions. For example high and low 

limits can be calculated as limits were 90% of the samples of the distribution are 

covered around average of the distribution. Then can be assumed moving average of 

the observed variable stays between the limits during system normal operation. These 

alarms limits are generated for all reference models located in all bins in operation 

point space to achieve alarm limit adaptation to the system operating point. Effect of 

the operating point to the alarm limits can be seen from Figure 7 where red lines are 

alarm limits and blue line is moving average of the observed variable. In the figure can 

be seen also how prestage leakage affects to flapper position. 



 

Figure 7: Flapper position and alarm limits during prestage leakage simulation 

The introduced method was evaluated with the fault simulator generated data including 

8 different faults seen in Figure 1. As seen in Figure 8, noisy stepwise excitation signal 

was used in these flow control loop simulations. During the simulation environmental 

variables supply pressure and temperature were varying as sinusoidal signals to 

simulate real operation environment variations and to verify robustness of the 

introduced FDD method. 

 

Figure 8: Flow control loop simulation 

Every tested fault was simulated as a linearly increasing fault. Size of the fault was kept 

small enough to maintain system performance in good level. In Figure 9 are presented 

the results of prestage leakage simulation as an example. There can be seen the 

percentile values of the internal variables in upmost figure. The percentile value 

represents difference between reference and present model as seen in Figure 6. As 
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noticed before, the flapper compensates prestage leakage. This can be seen also in 

the figure below. The alarms generated by introduced FDD method during the 

simulation are presented in middle figure and size of the fault in lowest figure. 

 

Figure 9: Prestage leakage simulation 

3. Results 
In Table 2 are seen the results of all fault simulation runs. Markings in the table are: 

• The internal variables of the system are listed at left side of the table. 

• The simulated faults are listed on top of the table. 

• 'REAL' text in the table means data is gathered from the real control valve test 

bench run in the laboratory. 

• Green area in table presents the internal variables which should compensate 

the fault according FDD principle presented before.  

• Grey variables were not used in fault detection and diagnosis.  

• Number one stands for high limit and minus one for low limit alarm.  

As can be seen from the table, all the faults can be detected and diagnosed to main 

modules of the system. Generally the internal variable closest to the fault reacts to the 

fault. Therefore the fault can be detected and diagnosed through detecting affected 

internal variables. The results from the real control valve test bench within three tested 

faults are consistent with the simulator results. 
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Table 2: Results of the fault simulations 

4. Conclusions 
Based on the simulations and the test bench runs it is possible to detect and diagnose 

typical control valve faults before severe impact to flow control loop performance. The 

internal variable before fault compensates and reacts first to the fault when utilizing 

feedback control. That leads to the operation point change for all the internal variables 

before the fault in the chain of the internal variables in the system. Fault localization 

resolution is related to the amount of the internal variables available for diagnosis. 
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