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Abstract 
The design and optimization of complex technical systems is an important task in 

engineering and development. Evolutionary hardware-in-the-loop (HIL) optimization 

constitutes a powerful method as it performs robust search in complex and high 

dimensional search spaces. The operating conditions severly influence the quality and 

performance that a solution subject to an HIL evaluation is able to achieve. Thus it is 

essential to properly control and select these operating conditions in the context of HIL 

optimization in order to accomplish robust valve performance across a large range of 

processes and applications. The identification of crucial operating conditions in terms of 

stimuli, disturbances and external parameters such as hydraulic load and pressure 

constitutes an optimization task by itself. The approach presented in this paper 

employs evolutionary optimization to identify test scenarios at the boundaries of the 

operating envelope under which regulation of the valve position is particular difficult.  

The parametrization and optimization of these conditions are illustrated and 

experimental results under realistic valve operation conditions are provided. 
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1. Introduction 
Modern methods of "Computational Intelligence" (CI) provide powerful tools for the 

design, development and optimization of technical systems. The combination of 

computer-based optimization methods with HIL-experiments on prototypes accelerates 

the design process as it systematically selects the most promising solutions and such 

reduces the number of designs to be manufactured and tested in the course of 

development. Evolutionary algorithms (EA) inspired by the natural evolution improve a 

population of candidate solutions iteratively over several generations. This property 

enables the heuristic algorithm, to approximate the globally optimal solution even in 

highly non-linear or complex solution spaces. In addition to their robust search EAs 

allow for optimization with respect to multiple conflicting objectives. Almost all technical 



design problems are inherently multi-objective, which provides EAs with a distinct 

advantage over numerical, nonlinear scalar optimization methods. In the context of 

controller optimization for hydraulic valves evolutionary HIL-optimization has proven 

successful on multiple occasions in the past /1/, /2/ and /3/. The primary goal is the 

optimization of a highly parameterized non-linear controller for a directional control 

valve. A digital nonlinear gain PID-controller controls the position of the valves piston 

measured by an inductive sensor. A fitness evaluation of candidate parameters is 

based on the aggregation of characteristic features such as rise time (Tr), maximal 

overshoot (MO) and integral of square weighted error (ISTE) of the closed loop 

response with respect to a reference stimulus composed of multiple steps in the small, 

medium and large signal range. This forms the experimental scenario used for the 

optimization of operating conditions in Section 4. Another scenario, involving a 

controlled pressure relieve valve is presented in Section 3. 

Optimization of control parameters, regardless of the method, requires the definition of 

operating conditions under which the controller is tested and its performance is 

evaluated according to the above mentioned criteria. In the context of HIL controller 

optimization, the ambient conditions, such as pressure, load and disturbances 

constitute the key aspects of valve operation. The proper choice of operating conditions 

significantly affects the robustness of the optimized control system. However, in the 

context of optimization of hydraulic valve controllers, the identification of crucial 

operating conditions might be as complex as the actual optimization of the controller 

itself. At first a suitable reference stimulus is required to assess the closed loop 

response. In addition the ability of the controller to reject disturbances is equally 

important for its robust operation. As it is impossible to evaluate the controller under a 

large spectrum of disturbances it is important to identify the most critical and 

representative disturbances beforehand prior to controller optimization. The basic idea 

of the presented approach is to apply evolutionary algorithms to identify critical 

operating conditions and scenarios. 

In contrast to common co-evolutionary algorithms, in which operating conditions and 

controllers co-evolve according to the predator-prey principle /4/, our approach 

separates both tasks of finding optimized controllers for the most critical operating 

conditions. This separation is valid as if one assumes that difficult operating conditions 

affect the performance of optimal or near optimal controllers in a similar manner. Thus 

it is possible to identify a set of critical operating conditions and then apply these static 

conditions for the fitness evaluation in the subsequent controller optimization. It is then 

possible to iterate this process by refining operating conditions on the basis of the 



currently best controller. Figure 1 illustrates schematically the interaction of the various 

aspects of the method. The controller that performs optimal under the initial operating 

conditions provides the benchmark to identify more challenging operating conditions in 

return. This cycle of intertwined controller optimization and operating condition 

refinement is repeated until convergence.  

 

Figure 1: HIL optimization scheme 

1.1. Evolutionary optimization 
Evolutionary algorithms in contrast to numerical optimization methods operate with a 

population of candidates rather than iterating a single solution. These individuals 

evolve across several generations during which they are subject to competition, 

selection and variation by means of genetic operators such as mutation and 

recombination inspired by natural evolution. Solutions that are superior within their 

generation with respect to the objectives are selected as parents and reproduce the 

offspring of the next generation. Similar to the natural evolution, this algorithm 

constitutes a robust and powerful method to find optimal solutions for complex 

problems. For details on EAs the interested reader is referred to /5/. 

Most realistic optimization problems hardly focus on a single objective, but rather 

consider multiple potentially conflicting objectives. The a priori aggregation of 

objectives into a single criterion is difficult to accomplish as criteria from different 

domains are usually defined with different metrics and scales. To avoid such an a priori 



aggregation, multi-objective evolutionary algorithms (MOEA) generate a set of optimal 

compromise solutions that approximates the so called non-dominated or Pareto optimal 

solutions. From this approximate Pareto set the expert selects his final solution 

according to his subjective preferences among the objectives. The MOEA employed in 

this paper is the popular NSGA-II by Deb et al. /6/. A general overview on MOAEs is 

provided in /7/. For multi-objective optimization the conventional fitness based ranking 

becomes obsolete and selection relies on the concept of dominance. A solution 

dominates another solution if it is superior in at least one objective and not inferior in 

any other objective. In this case improvement of a Pareto optimal solution in one 

objective comes at the cost of degradation in at least one other conflicting objective. 

2. Parameterization of operating conditions 
First of all, the optimization of operating conditions requires their proper 

parameterization. In an HIL optimization only operating conditions that can be modified 

automatically can be taken into account. In both experimental setups described in this 

article an additional load valve is used to influence the closed loop performance of the 

controlled main valve. In the first experiment (see Section 3) a flow control valve 

dynamically changes the oil flow the controlled pressure relive valve has to 

compensate. The second experimental setup uses a directional control valve to 

simulate a dynamic load that influences the controller performance of the main valve. 

Section 4.1 explains this test bed in detail. 

The periodic reference signal for both valves is generated by the real-time control 

system. The investigation considers three types of signals with different shape, namely 

a sinusoidal signal, a rectangular signal and a signal composed of multiple harmonics 

in terms of a Fourier series with the ability to approximate general wave forms. 

The single frequency sinusoidal and rectangular signals are defined in terms of the 

minimal and maximal amplitude and frequency f of the secondary valves set value 

function as shown in Figure 2. A preliminary investigation revealed that this particular 

parameterization better decouples their impact on the disturbance in contrast to a 

definition in terms of offset and amplitude. The Δφ defines relative phase of the 

periodic signal at the start of the experiment. In case of the tracking problem in 

Section 4.3 the parameter Δφ describes relative phase between the primary reference 

stimulus and the disturbance, which has a substantial impact on the emergence of 

interference between reference and disturbance. The length of the high and low pulse 

of the rectangular signal are not identical but are determined by the additional 

parameter (w) that defines the pulse-width as the ratio between t1 and t2. 



 

Figure 2: Parameterization of signals 

The Fourier series is limited to the superposition of the first k=4 harmonics: 

 
The coefficients an and bn are optimized and the resulting signal is normalized such 

that the overall amplitude is bounded by the limits Min and Max. This representation 

results in 2k additional parameters subject to optimization. 

Conditions that allow for automatically modifications but cannot be chanced fast 

enough to generate dynamic disturbances can be considered as a single real-valued 

parameter. These conditions are adapted in between each HIL experiment but remain 

constant during the evaluation. In all experiments in Section 4 the pressure of the 

system is an example of an operating condition described by a scalar optimization 

parameter. Other disturbances and operating conditions such as temperature are more 

difficult to vary and control at a rate that is sufficient for fitness evaluation. They are 

therefore not considered but rather kept constant during the experimentation. 

3. Optimization of operating conditions for pressure relieve valves 
The general task of a pressure relieve valve is to limit the system pressure at a 

constant level. This constitutes a regulation problem for the controller which is 

supposed to reject disturbances. The primary objective of the optimizing operating 

conditions is to verify a sufficient degree of robustness of the closed loop behavior. For 

that purpose the optimization identifies the most difficult conditions for which the 

performance of the reference controller degrades most. During the identification of the 

operating conditions the parameters of the controller remain fixed, thus the optimization 

seeks out the particular weaknesses of a controlled pressure relieve valve in terms of 

robustness as it reverses the very same set of objective functions employed in 

controller optimization. The resulting approximate Pareto set constitutes the operating 



conditions that deteriorate the closed loop performance criteria in the worst possible 

manner. 

3.1. Experimental hardware setup 
The hardware setup shown in Figure 3 is composed of a primary flow control valve 

which determines the hydraulic flow to be compensated by the subsequent secondary 

relieve valve. The feedback controlled pressure relieve valve regulates the pressure pa 

at a constant reference pset which is although an optimization parameter. The reference 

stimulus of the flow control valve is a rectangular disturbance signal, which maximizes 

the integral of the squared error (ISE) and maximal deviation (MO) of pa from the 

constant reference during regulation. 

 

Figure 3: Experimental setup - pressure relieve valve 

3.2. Results 
The optimization problem has the two objectives ISE and MO and six parameters. The 

parameters and their ranges for reference pressure and disturbance signal are shown 

in Table 1. 

Parameter: Range: Unit:  Parameter: Range: Unit: 
pset [3  200] bar  Min [0.1  3.08] l/min 

f [0.1  80] Hz  Max [0.1  3.08] Hz 
Δφ [-100  100] %  w [0  100] % 

Table 1: Range of parameters 

The evolution of both criteria over 50 generations is shown in the left part of Figure 4. 

The approximate Pareto front is spanned by the final non-dominated solutions marked 

by a circle and is shown in more detail in the right part of this figure.  



 

Figure 4: Optimization results; Left: development of the optimization objectives over 
the generations. Right: final nondominated set of solutions 

The two extreme disturbances at the boundaries of the Pareto front and the 

corresponding response of the regulation are shown in Figure 5. The most harmful 

disturbance signal causes a significant deviation from the reference. The analysis 

reveals that the Min value of the disturbance signals converges to its lower limit, thus 

causing low oil flow. The PI-controller of the pressure relieve valve closes the valve 

completely but is unable to increase the pressure pa quickly due to the low flow rate. At 

the same time the integrator block of the controller saturates the actuating signal to its 

upper limit. When the oil flow steps up almost to its maximum capacity a large 

overshoot in pressure is caused. The subsequent transition to minimal oil flow occurs 

at an instant that causes a significant undershoot due the integrating controller. 

 

Figure 5: The pressure response pa and the disturbance signal qset for the two extreme 
solutions of the Pareto front. 

While it is intuitive to that the worst disturbance utilizes the minimal and maximal 

amplitude, the identification of the most harmful frequency f, pulse-width w and set 

value pset provides the expert with valuable insight about problematic operating 

conditions and worst case scenarios. This knowledge is helpful in the redesign or 



improvement of the original controller structure, for example consideration of a more 

elaborate anti-windup system. 

4. Identification of critical operating conditions for proportional valves 
This experiment is concerned with the optimization of a controller for an NG6 

proportional valve. The controller is a PID controller with additional nonlinearities 

described by a total of 24 parameters. The closed loop response to a sequence of step 

inputs of different magnitude is evaluated in terms of five partially conflicting criteria 

including rise time, overshoot and integral of squared error. The operating conditions 

are defined in terms of the pressure and the hydraulic flow at the working ports of the 

valve, which constitute either at static or dynamic load disturbance. 

 

Figure 6: Experimental setup - proportional valve 

4.1. Experimental hardware setup 
Static and loads at the working ports of the main valve are imposed by actuation of a 

secondary proportional valve that connects the ports A and B of the main valve (see 

Figure 6). Due to the connection between the ports P and A resp. T and B of the load 

valve it operates only as throttle with a variable resistance hydraulic flow. The operating 

conditions in terms of load are affected by the system pressure and the dynamic 

secondary load valve position. The system pressure determined in terms of the 

pressure supplied by the pump is kept constant throughout a single evaluation but 

varies across evaluations of alternative conditions across a range between 0 and 

200 bar. However, the load becomes dynamic by actuating the secondary valve 

reference position with the type of disturbance signals described in Section 2. 



The operating conditions are optimized and compared in two different scenarios: a 

regulation problem in which the main controller maintains a constant valve position and 

a tracking problem in which the primary valve position tracks a stimulus composed of a 

step sequence. In both cases the affect of the disturbance on the regulation and 

tracking error is observed and analyzed. 

4.2. Load disturbance for a regulation control problem 
In this scenario the main valve controller regulates a static valve position at an opening 

of 50 % while its load is subject to a disturbance across a period of 250 ms. Two 

disturbance signals, namely a rectangular and sinusoidal load profile are investigated. 

The performance of the closed loop control is defined in terms of the integral of the 

squared error (ISE) between the actual and the command position. Hence, the scalar 

evolution strategy identifies those operating conditions as critical that maximize the ISE 

or minimize its negative value. An evolutionary run evolves a population of 50 solutions 

across 50 generations resulting in a total of 2500 fitness evaluations. 

 

Figure 7: Parameter histograms for rectangular (left) and sinusoidal 
disturbances (right) 

The distributions of the parameters of the solutions in the final generation are shown in 

Figure 7 for the rectangular signals (left) and the sinusoidal signals (right). In case of 

scalar optimization, the algorithm converges towards a single optimal solution. It is 

apparent that most parameters converge to a narrow range among the solutions in the 

final generation. Thus the fitness of the optimal solution is highly sensitive with respect 

to these parameters. Other parameters such as the phase exhibit a wider range, thus 

their impact on the fitness is less critical. Taking a closing a closer look at individual 

parameters reveals the following observations. The maximum system pressure most 



critically effects the regulation error. In both cases the most critical frequencies of the 

disturbance are in the range between 40 Hz and 50 Hz at which the most energy is 

transmitted via the hydraulic. Higher frequencies in the reference signal of the load 

valve are dampened as the secondary valve acts as a low pass filter with respect to the 

hydraulic flow generated by actuation of the piston. The phase of the signal bears no 

relevance which is not surprising for a regulation problem in which there is no 

interference between the constant reference and the load. The most critical minimum 

(Min) and maximum (Max) amplitudes of the disturbance signal are such that they 

generate a maximal variation of the hydraulic flow. This is accomplished by attaining an 

upper limit (Max) at which the valve is fully opened. The minimal amplitude is located at 

about 30 % of the overall range for the rectangular signal and at 20 % for the sinusoidal 

signal. Full closure of the valve completely shuts down the hydraulic flow and thus the 

disturbance. The utilization of the valve piston amplitude of about 60 % of the overall 

range is the best compromise to maximize the amount of hydraulic flow as well as its 

variation thus generating a maximum disturbance entry. 

4.3. Load disturbance for a tracking control problem 
The disturbance of a tracking control problem introduces additional aspects in to the 

identification of critical operating conditions namely: 

• multiple criteria in terms of the closed loop response for different step sizes and 

• interference effects between the reference signal and the disturbance. 

In this experiment the main valve tracks a reference signal composed of a sequence 

steps of different magnitude. The criterion integral of squared error (ISE) captures the 

transient as well as static closed loop behavior whereas the criterion maximal 

overshoot of the step response (MO) dominantly captures the transient behavior. In 

addition the closed loop response is distinguished for step signal in the medium (M) 

and large (G) range, thus resulting in overall four criteria (ISEM, ISEG, MOM, MOG). The 

two-dimensional projections of the four-dimensional approximation of the Pareto front 

resulting from the multi-objective evolution strategy are shown in Figure 8. The load 

signal is described in terms of the coefficients of a Fourier series. The crosses denote 

Pareto optimal solutions evaluated under the critical conditions in comparison to the 

criteria accomplished by the same controller in the undisturbed case. The negative sign 

of the criteria is due to the fact that the multi-objective evolution strategy by default 

minimizes objective functions. 



 

Figure 8: Pareto front for most critical disturbances for a tracking control problem 

The Pareto optimal solutions capture the compromise between multiple conflicting 

objectives as shown in Figure 9 which illustrates the disturbance signal for the load 

valve and the closed loop response of the main valve in reaction to the disturbance. 

For this particular disturbance the overshoot MOG for the large step responses is 

severely enhanced. In particular the first large step in positive direction exhibits a 

significant overshoot and low damping of oscillations due to the interference between 

the disturbance and the reference signal at time t = 100 ms. 

 

Figure 9: Disturbance signal and closed loop response for a particular critical operating 
condition 

 



5. Conclusions 
The experimental results demonstrate that the proper identification and selection of 

critical operating conditions is crucial for robust HIL evaluation and optimization of 

hydraulic valve controllers. The proposed approach enables the identification of worst 

case conditions and provides a qualitative picture of their detrimental impact on closed 

loop performance of the controller. This insight is helpful to enhance the experimental 

setup and strategy for a subsequent robust controller optimization by focusing on the 

most critical informative operating conditions. The controllers obtained from such a 

robust optimization are expected to exhibit verifiable performance across the entire 

operation envelope. This aspect of robustness is particular important in the context of 

hydraulic valves as they are integrated into highly diverse applications without 

adaptation of the underlying controller. 
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