
Multi-Threaded Real-Time Simulations of Fluid Power Systems

Using Transmission Line Elements

M.Sc. Robert Braun

Division of Fluid and Mechatronic Systems, Linköping University, SE-58183 Linköping, Sweden,

E-Mail: robert.braun@liu.se

Professor Petter Krus

Division of Fluid and Mechatronic Systems, Linköping University, SE-58183 Linköping, Sweden,

E-Mail: petter.krus@liu.se

Abstract

The demand for large-scale real-time simulations of fluid power systems is in-

creasing, due to growing demands for added functionality. Real-time simulations

can be used in for example hardware-in-the-loop experiments and embedded

control systems. In order to achieve real-time performance, it is often necessary

to use small or simplified models, reducing the usefulness and accuracy of the

results. This article proposes the use of transmission line modelling (TLM) for

exploiting multi-core hardware in real-time and embedded systems. The charac-

teristics of the TLM method are analysed to identify difficulties and possibilities.

A method for how to parallelise TLM models is then presented. Subsequently, a

programming interface for implementing the parallel models in the target systems

is introduced. Practical experiments show that the approach works and that the

method is applicable. So far, however, it has required great effort on the part of

the engineer, both when it comes to programming, compiling and importing the

model into the target environments, although some attempts to automate the pro-

cedure have been successful, reducing the level of complexity.

KEYWORDS: Real-time simulation, Distributed modelling, Transmission line mod-

elling, Parallel simulation, Multi-core, Model fidelity

1 Introduction

Demands on functionality and controllability in fluid power systems are increas-

ing. As a consequence, sensors and embedded software are being introduced

in many systems. This opens up new possibilities of real-time simulations, which

can be used in for example hardware-in-the-loop experiments and human-in-the-

loop simulators. Achieving real-time performance, however, requires much com-



puter power. With present technologies, high fidelity simulation in real-time is

not possible for other than rather simple systems. Specialised, highly simplified

and often linear models must often be used, resulting in less reliable simulation

results. In contrast to this, a common desire is to be able to use the same simu-

lation model throughout the entire product life cycle. This requires very complex

high-fidelity models, which are not adapted to real-time simulation. To achieve

real-time performance for such models it is necessary to fully exploit all the avail-

able computer power. This would enable high-fidelity hardware-in-the-loop ex-

periments of complex systems, which can reduce cost and time requirements in

product development. The particular problem studied in this project is a hardware-

in-the-loop test rig for developing hybrid drive trains for heavy vehicles. These

require a significantly higher level of control than conventional drive trains. High-

fidelity models are therefore necessary to develop these control systems.

Previously, it has always been possible to rely on the computer processor speed

increasing. Moore’s Law states that the number of transistors in integrated cir-

cuits will approximately double every year. While this still holds, the increase in

processor speed has however flattened out. There are several reasons for this,

but it is mainly due to the fact that the frequency in a processor is proportional to

the voltage and thereby to the square of the power dissipation. Further frequency

increases would be too energy-inefficient and require expensive cooling systems.

This has resulted in a trend among manufacturers to build processors with sev-

eral slower cores, so called multi-core processors. /1/

For running heavy simulation models with real-time performance, exploiting multi-

core technology is inevitable. Achieving parallelism in system simulations, for

instance models of hydraulic circuits, is however difficult. In most cases, an ordin-

ary differential equation solver (ODE) or a differential algebraic equation solver

(DAE) is used to find a numerical solution. These by nature contain many de-

pendencies between different variables, limiting the possibilities for parallelism.

An alternative approach providing interesting advantages is to use a system

model that is composed of distributed subsystems or components. Each such

component solves its own equations independently using distributed solvers. Us-

ing distributed simulations can even be an absolute necessity when working with

models from different vendors, in order to limit disclosure of restricted informa-

tion. Distributed solver approaches however require the parts of the models to



be independent in the time domain. One simulation technique that satisfies these

two conditions is the transmission line element method, which also happens to

be especially suitable for fluid power systems.

The contributions of this paper are as follows:

• The characteristics of the transmission line element method are analysed,

to identify the possibilities for parallelism.

• A method for how to divide transmission line element models is proposed.

• A programming interface for implementing multi-threaded transmission line

element models in a real-time system is presented.

• Practical experiments are provided to verify conductibility and to measure

the effectiveness of the method.

2 Multi-Threaded Transmission Line Modelling

The transmission line element method (TLM) is a modelling method for one-

dimensional power transmitting systems. It is related to the method of character-

istics, which was first used in the HYTRAN tool to simulate the hydraulic system

in the NASA space shuttle /2/, and to transmission line modelling of pressure-

flow systems as described in /3/, originally known as bilateral delay-lines /4/. The

main difference compared to other simulation methods is that TLM components

not only communicate with pressure and flow, but also with characteristic imped-

ances. This makes it possible to simulate wave propagations very accurately.

Components are divided into capacitive components (C-type) and resistive com-

ponents (Q-type). At any given time, one component is never dependent on an-

other of the same type. This means that all C-type components can be simulated

in parallel, and subsequently all Q-type components in parallel, with a physically

motivated time delay in-between. This is achieved by using distributed solvers, so

that all components solve their own equations.

Due to the time independences and the absence of a centralised solver algorithm,

TLM models are very suitable for parallel simulations /5/. By distributing the work

load of a simulation over several processor cores, simulation performance can be

greatly increased. Ideally, the speed-up factor will increase linearly with the num-

ber of cores. In reality though, multi-threading programs suffer from overhead

time costs, which reduces the benefits. As model size increases the significance

of the overhead is however reduced, making the speed-up almost linear to the



number of cores /6/. Equation 1 explains the relationship between relative spee-

dup (SUrel(p,n)), execution time with one processor (tA(1,n)) and execution time

with p processors (tA(p,n)). The variable p must not always match the actual

number of processors, but can more generally be defined as the degree of paral-

lelization. The difference between single-threaded and multi-threaded simulations

can be illustrated as shown in Fig. 1 and Fig. 2.

SUrel(p,n) =
tA(1,n)

tA(p,n)
(1)

Figure 1: Letting one core do all the work is inefficient.

Figure 2: Distributing the work load can reduce simulation time.



Previous attempts to run parallel simulations by using the TLM method have been

made using networks of separate computers /7/, and subsequently transputer

technology, which was an early predecessor of multi-core processors /8/. An

automated algorithm for multi-core support in the Hopsan simulation package

was implemented in /6/. Hopsan is an integrated simulation environment for fluid

and mechatronic systems based on the transmission line element method. De-

velopment first began at Linköping University in the late 1970s and it has been

used by industry as well as for research. A new generation of the software was

released in 2011. It is the only simulation package that utilises the TLM techno-

logy within mechanical engineering and fluid power. /9//10/

The new generation has built-in support for parallel simulations on multi-core pro-

cessors, by using the Threading Building Blocks from Intel. The simulation core

will automatically measure time requirements for each component, and partition

models to achieve good load balancing /6/. This function however depends on

both external libraries and an operating system with a task scheduler. For this

reason it is not suitable for embedded real-time systems, which may only support

a single binary file or require manual mapping between threads and processor

cores. The solution for such systems is based on the idea that several compon-

ents of C-type and Q-type can be combined into larger sub-models, also of C-type

or Q-type. Each such sub-model can then be compiled into a separate library file,

to be executed on separate processor cores.

3 Method of Implementation

The target system used for implementation is a real-time multi-core computer us-

ing the Windows XP Embedded operating system. It has a processor with four

cores, each capable of simulating with a time step of down to 1 µs. Simulation,

communication and data acquisition are handled by a software platform based

on LabVIEW and developed by Prevas /11/. Shared library files (.dll) with pre-

compiled code can be uploaded to the target through a graphical interface on the

host computer, see Fig. 3. Input ports, output ports and parameters in these can

then be routed either to each other or to external sensors and control systems.

The libraries must be compiled according to the National Instruments’ Veristand

framework, which is used by the Simulation Interface Toolkit. This specifies an

API with functions for initialising , simulating and accessing ports, signals and

parameters. Parameters are double-buffered, meaning that parameters have one

copy for read operations and one for write operations, to enable thread-safe con-



current read and write operations /12/. The code is executed through three main

functions called USER_initialize() which is run once at the beginning of the sim-

ulation to initialise the model, USER_takeOneStep() which is called at every time

step and handles the actual simulation computations, and USER_ f inalize() which

can be used at the end for cleaning up after the simulation.

Figure 3: A LabVIEW-based software interface was used to control the real-time

target system.

In non-real-time multi-threaded simulations in Hopsan, models are parallelised

component by component. First, all C-type components are run in parallel. Then

the threads are synchronised, and when all threads are finished the Q-type com-

ponents are run in parallel. This works well because it is easy to automate and

requires no manual adjustment of the model /6/. It is not, however, a feasible

method for real-time simulations, since it requires a great deal of communica-

tion between different parts of the model, which causes time delays and must

be manually routed. This is not the case in non-real-time simulation because a

shared memory can be accessed directly from each component. In real-time,

each part of the model also requires its own pre-compiled library. Too many lib-

raries will inevitably cause additional overhead costs. An alternative approach is

to partition the model into several larger sub-models, also of either C-type or Q-

type, see Fig. 4. Ideally, there should then be one such sub-model on each core,



or fewer if the system is small, to reduce further overhead costs.

Figure 4: With transmission line modelling, systems can be divided into time

independent subsystems of C-type or Q-type.

Each of these sub-models must be compiled in to a shared library together with

the simulation core. This is due to the fact that the real-time system in its current

state cannot handle libraries that depend on other libraries. For similar reasons,

the models cannot be loaded from a model file, but must instead be hard-coded

into the library by communicating directly with the simulation core API. Doing

so directly would obviously result in complicated coding. To increase the level

of abstraction a set of wrapper functions was created, see Fig. 5. These make it

possible to initialise a model, add components, define connections, set parameter

values, initialise the simulation and simulate one step at a time.

Ideally, C-type and Q-type components shall never be ran simultaneously, due

to the fact that a component is only independent of other components of its own

type. The physically motivated time delay between components should be pre-

served if possible. This can be achieved in two ways. The easiest method is to

only execute the code from each library every second time step, with C-libraries

on odd steps and Q-libraries on even steps. A more complicated approach would

be to include two systems in each library, one of each type, and alternate between

these every other time step. A third possibility might be to use the first method,

but assign two libraries to each core. Another possibility would of course be to



Figure 5: Wrapper functions are used to increase the level of abstraction in the

library code.

investigate whether the impact of not taking the time delays into account really is

significant, by running all subsystems simultaneously and always using the most

recent node variables. This would likely give erroneous results for wave propaga-

tions, but if the overall effect is small it may still be useful for simulations where

wave phenomena are of less importance. Only the first and third approaches

have been considered in this paper.

The Hopsan simulation core requires all used ports in a model to be connec-

ted. For this reason, it is necessary to place special interface components at

the boundary ports on each system, see Fig. 6. These components contain no

equations, but add the necessary boundary connections and allow the wrapper

library to access variables in the node with the readNode() and writeNode()

commands. The actual communication between subsystems is then handled ex-

ternally by the simulation platform in the target system according to the signal

routing specified in the user interface. These connections can also involve other

signals in the system, such as libraries from other sources, measurement signals

from sensors or control signals. This enables powerful tools such as co-simulation

and different kinds of in-the-loop simulations. In this article only Hopsan libraries

are considered.



(a) (b)

Figure 6: Interface components, shown as rectangles with black arrows, must

be used at the boundary ports of the sub-models.

4 Analysis

The performance of the target system was measured by using a benchmark lib-

rary, which calculates the faculty of its input signal. The number of arithmetic

operations will thus be proportional to the input signal, making it possible to ad-

just the computational load during the simulation. When the computations on a

processor core take too long, it reports this as a missed iteration. The compu-

tational power could be measured by executing isolated benchmark libraries on

different cores, increasing the computational load and observing at which level

it begins to miss iterations. The maximum computational load in each core was

measured to be roughly 185MFLOPS. This corresponds to a load sensing sys-

tem similar to figure 4 with approximately 230 cylinders and a time step of 1 ms.

When the benchmarking code was wrapped into a Hopsan component, which

should theoretically induce some additional overhead, no significant reduction of

this value could be seen. It should thus be possible to run models the size of a

load sensing system with more than 900 cylinders when using all processors. In

a few of the measurements the performance was found to be significantly lower.

No explanations for this have been found at the present time.



(a)

(b)

Figure 7: A double mass-spring model was used for verification. It was

separated into a C-type and a Q-type sub-model.

��

��

��

��

��

��

�

�

�

	
��
 ���� ��������

����
 ���� ��������

����

�
�
�
��
��

	

(a)

��

��

��

��

��

��

�

�

�

	
��
 ���� ��������

����
 ���� ��������

����

�
�
�
��
��

	

(b)

Figure 8: Step response of the mass-spring system in Fig. 7 with

single-threaded simulation (a) and multi-threaded simulation (b).

�

���

���

���

���

���

���

	
��
� ��������

����
� ��������

����

�
�
��
�
	
�


�
�


��
��

�
��

�

(a)

�

���

���

���

���

���

���

	
��
� ��������

����
� ��������

����

�
�
��
�
	
�


�
�


��
��

�
��

�

(b)

Figure 9: Step response of a hydraulic position servo system with

single-threaded simulation (a) and multi-threaded simulation (b).

5 Conclusions & Future Work

Achieving parallelism in real-time systems by dividing models with transmission

line elements is feasible. Results show no noticeable effects on numerical prop-

erties or simulation results. The communication time delay in the transmission

lines can be maintained by running C-type and Q-type sub-models every odd and



even time step, respectively. This means that each model is only called every

second time sample in the host system. The host system sample frequency must

therefore be twice of the model frequency, in order to maintain the correct simu-

lation time step. Total speed-up is not reduced by this method because several

sub-models can be assigned to the same core.

The system used in these experiments was capable of processing very large

models without losing real-time performance even in single-threaded simulations.

However, this is not always the case and the methods derived in this paper should

be applicable on slower computers as well. The experiments showed that neither

wrapping the simulation core into dynamic libraries nor introducing the additional

communications necessary for multi-threading caused any significant overhead

time costs. This percentage, however, is likely to increase on slower machines,

possibly reducing the benefits.

To achieve maximum benefit from multi-threading, the model must be divided in

such a way that the total communication between the sub-models is minimised.

This also facilitates the implementation on the target system. The limitation of

only being able to use one dynamic library file for each sub-model makes the pro-

cess cumbersome. The source code for the simulation engine must be available

and the model must be hard-coded into the library.

A continuation of this work might be to introduce support for using additional

dependency files. This might for example be pre-compiled libraries, which are

necessary to protect source code in propriatory software. It would also be very

useful to be able to load models from external model description files. Another

continuation might be to verify the results on smaller embedded systems with

more limited computation capabilities. In the long run, the goal is to run hardware-

in-the-loop simulations with large-scale high-fidelity models and small time steps.

References

/1/ H. Sutter. A fundamental turn toward concurrency in software. Dr. Dobb’s

Journal.

/2/ Air Force Aero Propulsion Laboratory. Aircraft hydraulic system dynamic

analysis. Technical report, Air Force Aero Propulsion Laboratory, 1977.

/3/ P.B. Johns and M.A. O’Brian. Use of the transmission line modelling (T.L.M)



method to solve nonlinear lumped networks. The Radio And Electronic En-

gineer.

/4/ D.M. Auslander. Distributed system simulation with bilateral delay-line mod-

els. Journal of Basic Engineering, pages 195–200, June 1968.

/5/ P. Krus, A. Jansson, and J.O. Palmberg. Distributed simulation of hydro-

mechanical system. In The Third Bath International Fluid Power Workshop.

/6/ R. Braun, P. Nordin, B. Eriksson, and P. Krus. High performance system

simulation using multiple processor cores. In The Twelfth Scandinavian In-

ternational Conference On Fluid Power, Tampere, Finland, May.

/7/ A. Jansson and P. Krus. Real-time simulation using parallel processing. In

The Second Tampere International Conference On Fluid Power.

/8/ J.D. Burton, K.A. Edge, and C.R. Burrows. Partitioned simulation of hydraulic

systems using transmission-line modelling. ASME WAM.

/9/ M. Axin, R. Braun, A. Dell’Amico, B. Eriksson, P. Nordin, K. Pettersson,

I. Staack, and P. Krus. Next generation simulation software using trans-

mission line elements. In Fluid Power and Motion Control, Bath, England,

October.

/10/ B. Eriksson, P. Nordin, and P. Krus. Hopsan NG, a C++ implementation

using the TLM simulation technique. In The 51st Conference On Simulation

And Modelling.

/11/ Prevas. Viking GUI - User Manual, October 2010.

/12/ National Instruments. Using the NI VeristandTMModel Framework. National

Instruments Corporation, Austin, USA, latest edition, 2009. See also URL

http://www.ni.com/pdf/manuals/372952a.pdf.


