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Abstract 

This paper deals with the application of an iterative control structure for the injection 

cycle of a displacement-controlled industrial injection moulding machine. 

Conventionally used controllers for mould filling and packing are feedback structures 

switching between controlling ram velocity and hydraulic pressure. The algorithm 

presented in this paper uses an iterative feedforward approach for both injection and 

packing phase together, thus overcoming the difficulties of pressure peaks resulting 

from the switching action of the controllers. This inversion-based iterative approach 

uses a nonlinear mathematical model of the injection unit which is used for an error 

minimization on the basis of a quadratic next-iteration cost criterion.  

The application of the algorithm to a machine with a clamping force of 1600kN and 

injection unit size 6501 leads to a significant error reduction with an exponentially 

decreasing error level. In addition, the algorithm demonstrates a way to recall the 

maximum dynamic potential of the displacement-controlled hydraulic drive system 

without reaching the stability limit. 

KEYWORDS: iterative learning control, ILC, hydraulic drive, injection moulding 

machine, quadratic learning, nonlinear systems, displacement control. 

1. Introduction 

Many industrial applications, such as injection moulding or robotics, feature periodically 

repeating sequences. The performance of these systems that execute the same task 

multiple times can be improved by learning from previous cycles. Since conventional 
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(non-learning) controllers in non- or only slightly time-variant cycles yield the same 

error on each trial, the application of an iterative learning control (ILC) is feasible. The 

ILC algorithm behaves analogous to the human learning process. For example, it takes 

a long time to learn the high jump - a complex finite motion sequence. Comparable to 

the ILC, the errors of each trial have to be analysed to correct the motion sequence for 

the next trial. 

The production of plastic parts via the primary shaping procedure of injection moulding 

requires a highly repetitive process in which the quality of the moulded parts greatly 

depends on the accuracy of the process. As the process is related to the nonlinear and 

time-variant characteristic of the drive system, a control structure which can easily be 

parameterized and works stably in a wide range of operating points is needed. ILC 

algorithms satisfy these requirements. 

ILC algorithms can be classified according to the use of model information /1/. Gain-

type ILC algorithms update the feedforward signal with the product of gain times the 

error sequence, the derivative or the integral of the error sequence. Thereby the gain 

has to be adjusted properly to guarantee process convergence. Yet, for many 

applications either convergence can be very slow or an exponentially increasing 

feedforward signal can occur. By using model-type ILC methods one is able to avoid 

the mentioned disadvantages via employing a model of the dynamics of the controlled 

system. This leads to the so-called “inverse problem”: For the computation of the 

feedforward signal update, the inverse dynamics of the plant has to be derived.  

Iterative learning control was introduced by Arimoto /2/ in 1984, who developed the 

principle of iterative learning in robotics. His gain-type algorithm had a relatively simple 

structure, consisting of the previous error and an input term, often referred to as 

“betterment control”. In 1999 Havlicsek /3/ applied a similar algorithm to the          

valve-controlled filling and packing phase of an injection moulding machine for the first 

time. The algorithm, using a proportional-derivative update on the error, features 

different ILC designs for the filling and packing phase. It performs well, but the            

fill-to-pack transition leads to an oscillating error of the pressure. Subsequently, several 

papers about this issue were published, for example by Zheng /4/, who studied the 

transition between the injection and the packing phase for the gain-type algorithm. As a 

result, the control signal and the pressure transient became significantly smoother than 

at /3/.  

The model-type ILC was developed by Amann /5/. His algorithm was the basis of Gao’s 

work /6/, using the cost function for a sampled-time linear system. He applied the 



algorithm to the ram velocity of an injection moulding machine, which shows a good 

level of convergence and robustness. 

The difference between the mentioned publications and the present one is the 

application of a model-type norm-optimal ILC of a nonlinear system for the injection 

and the packing phase together. Based on the system model, a new ILC algorithm is 

suggested. The presented algorithm shows a great improvement compared to a simple 

feedback controller: with its help, disturbances over the cycles can be minimized. The 

approach facilitates a better use of the dynamic potential of the hydraulic drive system 

without leading to instability. 

This paper is outlined as follows. In chapter 2 the relevant system of the injection unit is 

described. Chapter 3 covers the iterative learning algorithm and the minimization of the 

quadratic next-iteration cost criterion. Chapter 4 deals with the modelling of the 

displacement-controlled injection unit. While chapter 5 focuses on the simulation 

results, the performance test of the actual machine is discussed in chapter 6. Finally, 

the conclusions are drawn and an outlook for further investigations is given. 

2. Process Description 

Injection moulding machines are one of the most important series machines in 

stationery hydraulics. There is a huge variety of drive systems for the actuation of the 

injection unit. Against the background of rising energy costs, increasing attention is 

paid to displacement-controlled electrohydraulic drive systems. For this reason an ILC 

is applied to an injection unit shown in Figure 1. 

 

Figure 1: Injection moulding machine 
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The drive system consists of two displacement-controlled pumps acting on a differential 

cylinder. (Further possible connections via switching valves are left out for 

simplification). The injection process starts with the injection of plasticized material into 

the mould according to a (process-dependent) user-given trajectory for the ram position 

� moving the injection screw forward (injection phase). Once the mould is filled, the 

pressure within the mould rises and the speed-control is switched to the control of the 

injection pressure (packing phase). As often a sensor for mould-pressure is not 

available, the hydraulic pressure �� (hereafter referred to as �) is controlled instead. 

The pressure trajectory has to be defined by the user according to material and mould 

characteristics. The product quality of plastic parts is considerably affected by the 

precision of the injection and packing phase and a minimal overshoot in the switching 

point ��. 

  

Figure 2: Desired trajectories and the transition between the injection                       

and packing phase (left) and the used mould (right) 

On the left side of Figure 2 a typical injection process for the moulded part on the right 

side of Figure 2 is shown: Before the switching point is achieved, the controlled 

variable is the position �, afterwards the hydraulic pressure �. Good quality parts can 

be achieved with a smooth switching between these two phases at switching point ��. 

Hence, a control strategy which minimizes errors quickly and reliably is needed. The 

following section presents an ILC approach which satisfies these requirements.   

3. Iterative Learning Control 

The presented learning control is a model-based algorithm according to /5/. It uses the 

error between the desired trajectory ����	
 and the measured signal �����	
	 of the 

shot weight: 9,5 g

clamping force: 900 kN

material: PP

cycle time: 20 s

Moulded part data:



last cycle to compute a feedforward signal ���	���	
 for the next cycle according to 

equation (1). This is done offline after each cycle �. 
���	 �	�� � η ∙ ����, �� , ��
	 (1)   

The index � denotes the number of completed trials and therefore j�1 means the 

following trial. Since the ILC is a closed-loop control over the cycles but not during the 

cycle, a feedback controller �� is needed to react to errors during the cycle according 

to Figure 3. For this, the feedback signal ����
 has to be added to the feedforward 

signal ����
 in each discrete time step �.  

 

Figure 3: Block diagram of the ILC algorithm 

The learning function �� computes the input vector 	���1 offline with two objectives: 

minimizing the error � � �� of the last step and minimizing the change of the control 

signal ∆��. 

3.1. Lifted System Representation  

For the prediction of the system output ���	 in the next cycle a lifted system 

representation is used. Nonlinear plants make it necessary to linearize the system 

along the desired trajectory � as described by Wagner in /7/. The result of this 

linearization is a matrix with the time variant impulse response ����,  
 with 0	 " � " # 

and � "  	 " #. The index � names the discrete time step of each impulse response 

and the index   represents the starting time step of the impulse responses. These time 

variant impulse responses establish the lifted system matrix $�. The prediction of the 

system output �� for a given input signal �� is obtained with equation (2), where �� 

represents the inaccuracy of the used model as a disturbance at the output. This 

disturbance is omitted in the following, because it is invariant over the cycles.  
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(2)   

3.2. Cost Criterion 

The norm-optimal iterative algorithm minimizes a quadratic next-iteration cost criterion, 

considering the control error and the change-rate of the feedforward signal. The cost 

criterion is specified over a complete cycle, including the switching point �� between 

the injection and packing phase. Therefore it is necessary to replace the general 

system output �� with the ram position �� 	and the hydraulic pressure �� according to 

the desired control variable input. Since the cost criterion is specified to decrease the 

error in the next cycle, the used factors have to be apply for the next cycle � � 1. 

Equation (3) describes the control errors between the given values � and the values in 

the next cycle ���	, respectively ���	. 

:;,��	 � �; � ���	 and :<,��	 � �< � ���	 (3)   

The change of the feedforward signal between the actual and the following time step 

∆���	 is described by equation (4) and (5).  

∆���	��
 � =���	�0
,																																															� � 0;
���	��
 � ���	�� � 1
, 1 ? � ? #.  (4)   

in matrix notation 

∆���	 �	
%&
&&
' 1 0 ⋯ 0�1 1 ⋱ ⋮0 �1 ⋱ ⋮0 0 ⋱ 00 0 ⋯ 1*+

++
,

-...../.....0
5∆

∙ ���	 
(5)   

This means that a sharp increase of the feedforward signal within the cycle will be 

punished in the cost criterion. This contribution is necessary to prevent an exponential 

increase of the feedforward signal for reasons of stability. The quadratic next-iteration 

cost criterion B��	 can now be derived (equation (6) and (7)).   



B��	 � C:;,��	CD � C:<,��	CD � C∆���	CD
 (6)   

in matrix notation results 

B��	 � :;,��	E ∙ F; ∙ :;,��	 � :<,��	E ∙ F< ∙ :<,��	 �	∆���	E ∙ F8 ∙ ∆���		 (7)   

where 

F; � G; ∙ H����
 ∙ I���	
 with I�J
 � K1, J ? ��0, J L �� 

(8)   

F< � G< ∙ H����
 ∙ ����	
 with ��J
 � K0, J ? ��1, J L �� 

In equation (8) G; and G< are the weighting factors. Additionally, a smooth transition 

between the two phases is required from the weighting matrices. This is achieved 

through filtering of the weighting matrices. The weighting matrix F8 is built up of a 

# � #-dimensional diagonal identity matrix multiplied by the weighting factor for the 

change of the feedforward signal G8. With the help of the three weighting factors it is 

possible to adjust the weighting ratio of the individual components in the cost criterion.  

3.3. Minimization Of The Cost Criterion 

For the minimization it is initially be necessary to replace the variables for the next 

cycle � � 1	with variables of the actual cycle � in the cost criterion B��	. This is done 

with the prediction of the output via the lifted system matrix (2). The time-variant 

impulse responses are generated for the closed-loop system �M in Figure 3, which 

means that the closed-loop with the feedback controller and the plant were used. To 

this end, the lifted system matrices $�,; and $�,< are the result from the inverter input 

to the ram position � respectively the hydraulic pressure �. The matrices describe the 

system input-output behaviour along the desired trajectory: 

���	 � $�,; ∙ ���	   and ���	 � $�,< ∙ ���	 (9)   

The feedforward signal for the next trial ���	 is calculated via 

���	 �	�� � 	N ∙ ��. (10)   

The next step is the substitution of equation (10) into (9) and (5). The error in the next 

cycle (equation (3)) can be expressed with the aid of equation (9) only by variables of 



the actual cycle �. After inserting equations (3) and (5) into (7), the cost criterion B��	 

only depends on the desired trajectories �; and �<, the feedforward signal of the 

actual trial �� and the learning function ��. The learning gain N is set to one and finally 

the new cost criterion (11) for the minimum search is the result.  

B��	 � O�; � $�,; ∙ �� � $�,; ∙ ��PE ∙ F; ∙ O�; � $�,; ∙ �� � $�,; ∙ ��P 

									� O�< � $�,< ∙ �� � $�,< ∙ ��PE ∙ F< ∙ O�< � $�,< ∙ �� � $�,< ∙ ��P 

									� O$∆ ∙ �� � $∆ ∙ ��PE ∙ F8 ∙ O$∆ ∙ �� � $∆ ∙ ��P 

(11)   

Minimizing the cost criterion in equation (11) with respect to �� 

minT2
UB��	V � WB��	W�� � 0 (12)   

yields to the optimal learning function 

�� � $	 ∙ O�; � �;,�P �	$D ∙ O�< � �<,�P � $X ∙ ∆��	 (13)   

with 

$	 � O$�,;E ∙ F; ∙ $�,; � $�,<E ∙ F< ∙ $�,< � $∆E ∙ F8 ∙ $∆PY	 ∙ $�,;E ∙ F; 

$D � O$�,;E ∙ F; ∙ $�,; � $�,<E ∙ F< ∙ $�,< � $∆E ∙ F8 ∙ $∆PY	 ∙ $�,<E ∙ F< 

$X � O$�,;E ∙ F; ∙ $�,; � $�,<E ∙ F< ∙ $�,< � $∆E ∙ F8 ∙ $∆PY	 ∙ $∆E ∙ F8 

(14)   

The feedforward signal for the next trial can now be computed by substituting equation 

(13) into (10). 

4. Injection Moulding Model 

As mentioned in chapters 1 and 3, the model-type ILC needs a model of the system 

dynamics to update the feedforward signal. Consequently, the creation of a 

mathematical description of the injection unit is required. This was done by Heilmann 

/8/ in his diploma thesis, based on the development environment MATLAB/Simulink. 

The model structure is shown in Figure 4. 



 

Figure 4: Block diagram of the injection unit 

The injection unit is a displacement-controlled hydraulic drive system, consisting of a 

frequency inverter with servo motor driving a constant pump. The injection ram is 

moved by two differential cylinders and injects the hot plasticized polymer into the 

mould. 

Motor and inverter are modelled as a PT1 element with speed-dependent motor time 

constant Z�J
 and the transmission gain [�1. The motor speed is calculated as 

follows.  

\J
\] � 	[�1 ∙ �	 � 	J�]


Z�J
  (15)   

The pump drives a proportional flow reduced by a pressure dependent leakage �<. 

F�]
 � 	 T̂ ∙ J�]
 � �< ∙ ���]
 (16)   

Taking the bulk modulus [′ into account, pressure build-up in volume �̂ of the 

injection cylinder is considered as  

\��\] � [′
�̂�]
 ∙ `F�]
 � a� ∙ �b �]
c (17)   

together with the motion equation 

d e � f ∙ �g�t
 � 	���t
 ∙ a� � �i�t
 ∙ ai � ej � ek (18)   

The load force ej can be ascribed to the pressure increase in the area in front of the 

screw. The frictional force ek represents the sum of the frictional forces in the injection 

cylinder and the viscous friction of the melt. The pressure build-up in front of the screw 

is modelled in the block “screw chamber” in Figure 4. The transfer behaviour is 

nonlinear and depends on the used mould. For detailed information, please refer to 

Heilmann /8/. The simulation model calculates the hydraulic pressure � and the ram 
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position � at the output. The control strategy is a switched control, which has a 

separate controller for each phase and is represented as the “control unit” block in 

Figure 4. During the injection phase, the ram position � is the relevant control variable 

and a proportional-type controller with gain [<,; is used to stabilize the process. When 

the prescribed hydraulic pressure level is reached, the hydraulic pressure � becomes 

the relevant control variable. Therefore, the proportional-type controller with gain [<,< 

for the packing phase is enabled.  

The parameters of the machine simulation model are taken from Helbig /9/ and are 

shown in Table 1 below. 

area of the piston in chamber A  a� 7461,1ffD 

area of the piston in chamber B  ai 922,8ffD 

leakage of the displacement pump  �< 9.3 ∙ 10Y	D fr #�s   

bulk modulus  [′ 6 ∙ 10XtuI  

transmission gain servo motor  [�1 4,16 1 ^�s   

mass at the injection cylinder f 150�� 

displacement volume pump  T̂ 50,6wfX 

Table 1: Parameters of the simulation model 

5. Simulation Results 

The simulations are carried out with MATLAB/Simulink using a sampling rate of 

Zx � 1f�. The injection velocity and pressure-trajectory are adjusted according to the 

manufacturer of the mould of the technical part which will be used for the performance 

test at the real machine later on. The desired trajectories for the ram position and the 

hydraulic pressure are shown in Figure 2. The desired ram position trajectory is a ramp 

with a slope of �b � 55 ff �⁄ . The desired hydraulic pressure trajectory has a 

staircase-shaped characteristic. The switching point in this application was set to 

�� � 77	tuI, which is 80% of the hydraulic pressure level after the switching point and 

is indicated by circles in the following figures. The parameters for the feedback 

controller [<,; � 90 and [<,< � 10 are selected in such way, that the closed-loop 

during the cycle is stable. To get a smooth transition at the switching point and a 

relatively low error level the weighting factors are set to G8 � 1:Yz, 	G; � 1, G< � 0.1. 

The learning gain is set to N � 0.15 for high robustness. The simulation was repeated 



100 times. Figure 5 shows the desired and the simulated output values for the ram 

position before reaching the switching point �� and the load pressure value afterwards. 

The error is pictured under each plot. 

 

Figure 5: Ram position (left), hydraulic pressure (centre) and the hydraulic pressure   

at the transition in detail (right) of the simulation 

In the first cycle only a smoothly parameterized P-type feedback controller was applied. 

Executing the ILC algorithm, the error decreases from cycle to cycle and the error is 

reducing to a maximum of :;,{x; � 0,1ff in position and :<,{x; � 1tuI in pressure. 

This result is achieved after the 45th cycle. From then on, the ILC runs stably and no 

betterment process can be observed. The exponential decreasing level of the sums of 

squared errors are shown in Figure 7 with 

B|;,� � :;,�E ∙ F; ∙ :;,�   and B|<,� � :<,�E ∙ F< ∙ :<,� (19)   

6. Performance Test 

The ILC was applied to an injection moulding machine at the TU Dresden Institute of 

Fluid Power. Parameterization and reference trajectories are the same as in chapter 5. 

The process control is executed by using a dSPACE real-time system connected to a 

PC. Results for the ram position and the hydraulic pressure are shown in Figure 6.  



 

Figure 6: Ram position (left), hydraulic pressure (centre) and the hydraulic pressure   

at the transition in detail (right) at the actual machine 

The hydraulic pressure in the injection moulding machine at cycle 100 followed the 

desired trajectory closely. Small oscillations in the system pressure occurred as 

responses to the given pressure steps. The sums of squared errors show a stable 

exponential learning rate in accordance with the simulation. The prediction of the 

learning rate worked properly. 

 

Figure 7: Sum of squared errors in simulation and at the actual machine 



An example for the disturbance-flexibility of the algorithm can be seen at the 45th cycle, 

when a frozen sprue blocks the nozzle and prevents an injection. After the blockage is 

eliminated, the algorithm decreases the pressure error cycle by cycle until the pre-

disturbance error level is reached once again. However, compared to the simulation, 

the minimum of the sum of squared errors at the actual machine is approximately two 

decades higher. This is caused by the simplicity of the model, which only takes into 

account the major nonlinearities and the fact that the measured sensor-signals are 

naturally noisy.  

7. Conclusion 

This paper has proposed the application of an iterative learning controller to the 

injection unit of an injection moulding machine. It has been shown, that the controller 

achieves a good tracking performance and is robust to the influence of external 

disturbances. A switching-law eliminates the overshoot between the injection and 

packing phase which is a requirement for a stable production quality. Furthermore, the 

controller acts stably when errors occur - even though the underlying model is quite 

simple. As the iterative learning controller does not influence the closed-loop stability, 

the feedback controller can be designed as a disturbance compensator. Displacement-

controlled systems with variable speed pumps are an energy-efficient alternative to 

valve-controlled drives, but because of their big inertia they tend to be less dynamic. 

Moreover, today’s controllers often cannot recall maximum dynamics due to stability 

reasons. In contrast to this, the learning controller is able to take advantage of the 

strength of this driving concept by exploiting the maximum dynamics. 

Yet, further investigations regarding the limitations of the drive-systems and the error 

handling need to be carried out. 
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Nomenclature 

J motor speed     1 ⁄ min 

� hydraulic pressure    bar 
�� melt pressure in front of the screw  bar 
F hydraulic flow     mX s⁄  

Z motor time constant    s 

� input signal     1 min⁄  

^ volume of the injection cylinder  mX 

� ram position     mm 

�b  ram velocity     mm s⁄  

�g  ram acceleration    mm sD⁄  


