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Abstract 
In the paper, a design of novel 3-DOF octahedron-shaped modules for hydraulically 

actuated variable geometry truss manipulators and its nonlinear control architecture will 

be introduced. The main features of the design are the optimized multiple collocated 

spherical joints and a structure-integrated supply of the drive fluid for the hydraulic 

actuators. Based upon the presented structure, a family of highly maneuverable light-

weight hyper-redundant manipulators can be derived. 

Furthermore a model-based nonlinear control architecture is introduced for the 

hydraulically driven manipulator to ensure high control performance all over its 

workspace, in spite of the pronounced nonlinearities of the hydraulic drives and the 

structures kinematics. The advantages of the presented control approach are 

demonstrated by a comparison with well-known control designs for hydraulic drives 

using a virtual model of the manipulator. 
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1. Introduction 
Conventional manipulators for manufacturing processes are typically used in strongly 

structured environments, performing prescribed tasks and guaranteeing a required 

precision. In standard serial robotic manipulators the number of actuated joints is 

usually limited to the required minimum for the demanded task in order to ensure low 

moved masses. Consequently this restricts the reachable workspace in the presence of 

obstacles. Tasks for which an obstacle-free working environment cannot be asserted 

have therefore been largely exempt from thorough automation. The high cost 

percentage of the manual labor triggers today’s significant efforts towards the 

exploration of new strategies to make those tasks accessible to automation. 

To enhance maneuverability and flexibility of motions, additional axes of motion can be 

introduced, leading to kinematically redundant manipulators in which the number of 

actuated joints exceeds the degrees of freedom of the end-effector. They possess a 

larger dexterous workspace due to the possibility to avoid obstacles in the workspace, 

to compensate for joint limitations and singular configurations of the manipulator. 

The drives in a redundant manipulator have to be able to realize a high payload-to-

weight and power-to-weight ratio in order to allow the cascading of the necessary 

number of structural modules to achieve kinematic redundancy. The feasibility of 

hydraulic actuation for redundant manipulators has been proven by a few successful 

redundant robot designs, most notably the Schilling Titan 4 /1/ and SARCOS 

Dexterous Arm /2/, both with seven DOF’s and Zhao’s ten DOF robot arm /3/. These 

and the most of all other approaches are in serial kinematic design which results, in 

order to ensure a demanded stiffness, in a relative low payload-to-weight ratio. 

In contrast the stiff but light-weight hybrid serial-parallel variable geometry truss (VGT) 

structures provide an excellent payload-to-weight ratio when combined with hydraulic 

actuation. Until now, the full potential of hyper-redundant hybrid serial-parallel VGT 

structures has not been exploited, due to the complex dynamical behavior of the 

hydraulic drives, the nonlinear kinematics and the necessity for a suitable control 

design taking these effects into account. Due to their local nature, standard linear 

control designs for hydraulic drives, like PID- and state space controllers in 

combination with velocity-feed-forward controllers, cannot fully exploit the potential of 

the resulting structure to provide high accuracy and highly dynamic control of the 

manipulator all over the workspace. 

  



2. Research objective 
Our research was focused on the design of a hyper-redundant manipulator which 

achieves its high potential from: 1. A specific module kinematic with one translational 

and two rotatory degrees of freedom (DOF), which allows easy scalability, light-weight 

design and high common part degree; 2. The usage of hydraulic drives to provide high 

force-to-weight ratio to keep the moved masses low and to achieve high dynamic; 

3. The development of a control design which can deal with the hydraulic and 

kinematical nonlinearities to access the full potential of the manipulator. 

2.1. Module design 
The class of hyper-redundant robots can be divided into three main groups /4/: highly 

segmented serial robots, hybrid serial-parallel robots and continuous robots. Because 

of their inherent underactuation and the resulting problems in modeling and control, the 

group of continuous robots was disconsidered from our study. Among the remaining 

segmented serial and hybrid serial-parallel structure, the most promising was the VGT 

in octahedron design, see figure 1. The main advantages of this type of structure are: 

theoretically zero bending moments on actuators and links due to the use of spherical 

joints; minimum number of actuators for the desired DOFs; large dexterous workspace 

of the composed manipulator; high common part degree. The designed modules 

primarily consist of three elements, see figure 1: the active links (a), the passive links 

(b), and the multi-collocated spherical joints (c). 

 

Figure 1: Kinematic structure of a single module. 

2.2. Hydraulic actuation and power supply 
From the variety of existing hydraulic linear drives, the single rod double acting cylinder 

is the most feasible for the actuation of the octahedron VGT, see figure 5. In order to 

achieve a high movability, as well as a large workspace of the kinematic structure, the 

active link has to realize a high maximum-to-minimum length ratio k , which excludes 

hydraulic cylinders with a built in position sensor or end-of-stroke-damping. Beside the 



high length ratio k  the actuator has to possess a large piston rod area 

( )2 2
B p prA 4 d - dπ= ⋅  to provide high forces under compression B B 0F A p= ⋅ . In order to 

choose the cylinder for the kinematic structure, an optimum between the length ratio k  

and the maximum force BF , with respect to the constraints of maximum system 

pressure 0p  and maximum piston diameter pd , has to be found. Special attention has 

to be paid to the danger of buckling of the hydraulic cylinder. Due to the mainly 

horizontal, free hanging and simply-supported cylinder, the danger of buckling is 

increased because of bending under the influence of the weight of the cylinder and the 

other assembly parts (valves, adapter plate, etc.). A safety factor of minimum 5 is 

recommended. By using zero lapped 4/3 proportional-way-valves, a good controllability 

of the actuators and a low energy consumption during holding operations can be 

achieved. 

To realize the drive fluid supply to the actuators, a variety of solutions using hydraulic 

hoses and pipes is imaginable; three approaches are depicted in figure 2. The design 

shown in figure 2 (right), in which the passive links of the structure are designed as 

hydraulic pipes to transport the fluid proved the most promising. Since there are six 

passive links in each module, it is possible to use three links for power and three links 

for tank supply in order to reduce pressure losses/drops. This variant is mainly selected 

due to the advantage, that there are no separate and unrestrainedly moving hydraulic 

hoses within the structure. On each link a branching is inserted from which the power 

supply port of the respective actuator is connected via a conventional hydraulic hose, 

see figure 3 (right). Also the ends of the passive links are connected with hydraulic 

hoses because these hoses have to cross each other in each joint point. The resulting 

system possesses a high hydraulic stiffness because of its rigid hydraulic pipes and 

minimal hose length (reduced up to 80 percent in comparison to the other variants). 

 

Figure 2: Power supply routing 



Since the passive links of the structure are used as hydraulic pipes, the joints have to 

provide enough space between the endings of the passive links to connect them with 

hydraulic hoses. In /5/ we compared different types of collocated spherical joints which 

are usable for the octahedron VGT. As a basis we chose the SJM (Spherical Joint 

Mechanism) introduced by Bosscher /6/, and optimized it for mechanical load, collision 

freeness, and to provide enough space between the passive links in order to connect 

them with hydraulic hoses, see figure 3 (left). When the structure is moving, the 

passive links are twisting towards each other, which would result in torsion of the 

hoses. To avoid this torsion, which is not recommended for standard industrial hoses, 

therefore one of the connections to the passive link has to be designed as a swivel 

coupling. 

 

Figure 3: Spherical joint with bearing for active and passive links (left) and  
hose routing (right). 

2.3. Resulting manipulators and properties 
The designed modules can be cascaded to form a manipulator as shown in figure 4. 

For one module the maximal attainable relative height difference ∆ = ∆*
0h h / l  over 

both module angles ± 30° is 0.33 and the payload-to-module-weight ratio m  reaches 

values of up to 22 /5/. If more than two modules are combined, the resulting 

manipulator will have redundant DOFs. The payload-to-mass ratio rpm, which is an 

important benchmark value to evaluate the handling capability of manipulators, reaches 

values of up to 10 for the three module VGT shown in figure 4. Standard industrial 

manipulators possess an rpm of 0.05, while modern light-weight manipulators can reach 

an rpm of up to 1. The high rpm of the presented manipulator ensures higher dynamic 

motions and lower energy consumption in comparison to standard industrial robots. 



 

Figure 4: Cascaded manipulator 

3. Modeling of the hydraulic drives 
The presented hydraulic drives of the VGT consist mainly of four units: constant 

pressure sources, hydraulic pipes and hoses, proportional-valves and hydraulic 

cylinder, see figure 5. The constant pressure source, the pipes and hoses we 

supposed to be ideal, therefore the modeling effort was concentrated on the valves and 

cylinders. 

 

Figure 5: Nomenclature for modeling of the hydraulic drive. 



3.1. Proportional valve 
The dynamic behavior of the proportional valve can be described as a second-order 

dynamic system. The control spool position vy  is measured in the valve. Its behavior 

can be described by the differential equation (1). 

vv
2 2

v 0 v E v 0 v v 0 v

yyd
ydt K u 2D K y yω ω ω

  
=    − −   



 
 (1) 

The valve gain is the quotient of maximum valve position and maximum control voltage 

=v v ,max E , maxK y / u . The angular resonance frequency ω0  and damping vD  can be 

derived from the datasheet of the valve. With =0 350 Hzω , the typical corner 

frequency of the valve is three times higher than the resonance frequency of the 

cylinder. The static valve behavior, which leads to the volume flow AQ  in operating port 

A and BQ  in operating port B, is a function of the spool valve position vy  and the 

pressure drop over the control edges which are depending on the system pressure 0p , 

the tank pressure Tp , and the pressure on the control ports Ap  and Bp . By defining 

( ) { } sgn x x  x 0, 0  x 0= ∀ > ∀ ≤  the volume flowing into or out of the control ports A and 

B can be calculated using Equation (2) with nominal flow nomQ  and the nominal 

pressure drop p∆  /7/. 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

 
v 0 A v A TA nom

B v 0 B v B T

sgn y p p sgn y p pQ Q
Q p sgn y p p sgn y p p

 ⋅ − − − ⋅ −   = ⋅   ∆  − ⋅ − − ⋅ − 

 (2) 

3.2. Hydraulic cylinder 

To allow the control of the actuator the piston rod position yy  and velocity yy , as well 

as the pressure values Ap  and Bp  on the control ports A and B have to be known. 

Under disregard of external leakage, the actuator behavior is depending upon the 

volume flows into the cylinder chambers AQ  and BQ  and the external force extF . The 

state vector to describe the behavior of the cylinder is therefore 
T

y y A By y p p   , 

its derivative is written in (3) with the viscous damping constant d , the effective mass 

of the piston rod and attached elements that move along with it m , the hydraulic 

stiffness oilK  and the inner leakage factor LipK . 
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4. Nonlinear control architecture 
Due to the inherently nonlinear behavior of both the electrohydraulic actuating system 

and the manipulator dynamics, linear controllers provide only very limited control per-

formance. Therefore, for the control of the VGT manipulator we present a cascaded 

nonlinear control architecture as sketched in figure 6. The inner loop features a 

controller that linearizes the nonlinear force generation and applies a linear control law 

to the linearized force plant. The outer motion control loop features a feedforward 

linearization of the manipulator dynamics by computed torque along with speed and 

position controllers to suppress disturbances. 

 

Figure 6: Nonlinear manipulator control in cascade structure (The numbers of the 
equations describing the blocks are given). 

4.1. Feedback linearization of the hydraulic drive 

Since the piston rod position yy  and its velocity yy  change their value slowly in 

comparison to the hydraulic states, they can be regarded as time-invariant parameters 

for the control of the hydraulic subsystem. This allows the decoupled control of 

hydraulic and mechanic states. With this separation, only uncomplex linearization 



terms result, which then allows a straightforward design of the controller, as compared 

to the one in /8/.

 The dynamic model of the 4/3 proportional valve, see Equation (1), was neglected for 

the feedback linearization, and will be taken into account in the force controller design 

process later in this section. The general equations (2) of the resulting volume flows AQ  

and BQ  can be simplified direction-dependent for positive and negative spool valve 

positions ⋅v v Ey =K u , so that the dynamic of the hydraulic drive can be written as an 

affine in control system: 

E( ) ( )·u= +p f p g p  (4) 

with state vector [ ]TA Bp p=p , control voltage Eu  and the nonlinear vector fields 

( )f p  and ( )g p . With substitution v oil nomV K K Q p= ∆ , ( )f p  and ( )g p  are given by: 

( )( )

( ) ( )( )
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− + 
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The output Fa of the hydraulic system is the actuator force generated by pressure 

differences in the cylinder chambers (7). Its derivative is given by (8). 

= −a A A B BpF A A p  (7) 

= ⋅= − +  a A A B B EF A p ( ) ( up )A α βp p  (8) 

The exact input/output linearization of the nonlinear system (8) by the input 

transformation (9) with the terms ( )α p  and ( )β p  forms a linearizing feedback with 

linear input v . 

( )E
1u v ( )
( )

α
β

= − p
p

 (9) 



The resulting linearized actuator dynamic is thereby a vF = . The remaining inner 

dynamics of the system (4)-(6) is locally asymptotically stable for 0 Tp p>  and 

y y ,maxy  0,  y =   . The linearizing terms ( )α p  and ( )β p  are: 

( )( ) ( )( )= − − + − − +
−

 oil oil
Lip A B A y Lip A B B y

y y ,max y

K K( ) K p p A y K p p A y
y y y
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with the direction-dependent values for ( )β p : 
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+ = − + −
−0 A B T

y y ,max y

V V( ) p p p p
y y y

β p , (13) 

− = − + −
−A T 0 B

y y ,max y

V V( ) p p p p
y y y

β p . 

In the linearization loop, the sign of the term ( )v ( )α− p  is used to switch between the 

values of ( )β p . Since ( )β+ p  and ( )β− p  are both positive terms the switching results 

only in scaling of the controller output Eu , but not in a change of its sign. Therefore 

there is no “chattering” of the valve position. 

After the exact input/output linearization the resulting linearized plant can be simplified 

into an integrator and a first order approximation of the valve dynamics with a time 

constant of e v 0T 2D ω= . For the force control loop a linear proportional feedback 

controller with the gain Fk  was calculated using the amplitude optimum method: 

=F
e

1k
2T

 (14) 

Since the feedback linearization relies on an approximation of the plant the resulting 

behavior is not exactly linearized, as can be seen in figure 7. The performance of the 

direction dependent force controllers is still comparable, though. 



 

Figure 7: Normalized step responses of the force controlled actuator in a clamped 
configuration (Controller with >Eu 0  (left), with <Eu 0  (right)). 

4.2. Motion control structure 
Typical motion control algorithms for robotic manipulators lead to control in either joint 

or operational space. The implementation of an operational space control scheme 

necessitates a precise analytical description of the manipulator dynamics. Since the 

dynamic relations in the described VGT cannot be feasibly executed in real-time, the 

motion controller for the VGT structure is implemented as a set of independent joint 

controllers, controlling the manipulator in joint space, see figure 9. 

After application of the linearizing force controller the resulting force control loop 

exhibits quasi-linear first order lag behavior with a time constant of e2·T , which allows 

the design of a classical positioning system in cascaded structure, with a velocity and a 

position controller. Two control loops where applied to the rod velocity plant, the inner 

with a proportional and the outer loop with an integral controller. Both were designed 

using the amplitude optimum criterion, as it allows good reference tracking, along with 

a desirable disturbance rejection behavior. To evaluate the performance of the velocity 

controller the velocity responses of the open, see figure 8 (right), and closed control 

loop, see figure 8 (left), as a result of step inputs of the reference and disturbance 

signals. It can be seen, that the controlled system shows a well-damped behavior and 

the rod velocity meets the desired values of 0.2, 0.4, and 0.6 m/s after only 5 ms. 

Moreover, force disturbances fed into the system as a step input for ≥t 0.02s  are 

quickly eliminated. 



 

Figure 8: Behavior of the controlled (left) and open velocity loop (right) as response to 
step inputs for the reference and disturbance signals.  

For the remaining position control loop a proportional controller was selected, since it is 

sufficient to provide exact steady state reference tracking for constant inputs even in 

the presence of output disturbances, due to the plant integrator in the open control 

loop. The designed controller structure enables the system to follow stepwise position 

as well as velocity commands for a single joint even in the presence of force 

disturbances.  

Due to the control in joint space the desired end-effector trajectories x(t )  in Cartesian 

space have to be transformed into the respective joint space trajectories 

=q x(t ) IKP( (t ))  which serve as reference signal for the position controller. To improve 

tracking performance, the resulting joint space velocities q  are calculated from the 

Cartesian end-effector velocities x  via the differential kinematic of the manipulator 

=x J q q ( ) . The joint velocities are fed into the velocity controller, so that it becomes 

active even before a position error accumulates. 

Due to the nonlinear coupling between joint motions through the manipulator structure, 

every motion of single actuators will cause disturbance forces within the manipulator 

structure. These disturbance forces cause errors in the affected joints which their 

controllers would pick up and eliminate slowly. The occurring errors in these axes can 

be largely prevented, by using the knowledge about the dynamic couplings between 

the motions to approximately compensate disturbance forces. The dynamic behavior of 

the manipulator is described by the following relation: 

+ + =  x x x x( , ) ( )M x C x x x g x F  (15) 

The Cartesian forces necessary for the desired manipulator movement in operational 

space are projected into joint space via the transposed Jacobian matrix, described by 



the manipulator static force relation T
x q=F J F . Consequently the necessary joint force 

vector to produce a desired motion in operational space is calculated and fed to the 

force controller as a reference signal: 

( )−= + +  T
fwd x x x· ( , ) ( )F J x C x x x g xM  (16) 

With the feedforward values for the joint forces, the desired joint variables fwdq  and the 

joint velocities fwdq  all necessary feedforward values for each controller in the cascade 

structure are known. This constitutes the computed torque feedforward controller 

structure, depicted in figure 9, which was implemented for the motion control of the 

manipulator. Since all information is fed about the desired trajectory is used in the 

feedforward signals, thus the feedback controller only needs to suppress unmodelled 

dynamics and disturbances and can be laid out accordingly. 

 

Figure 9: Motion control structure for the used set of independent joint controllers with 
feedforward compensation through a computed torque approach. 

4.3. Evaluation of the control design 
For the evaluation of the control designs, a virtual prototype of a two module VGT, as 

seen in figure 10, was built in MATLAB(R) to model the hydraulic system and the 

mechanical structure with all its nonlinearities. Using this model the proposed control 

structure was compared with well-known control designs for hydraulic systems, like 

adaptive P-controller with velocity feedforward or adaptive reduced state controllers 

with hydraulic-model-based feedforward signals. In order to compare these control 

designs we have chosen a circle-trajectory for the tool center point (TCP) which goes 

through an area of high sensitivity in the manipulators workspace, which means that an 



error of the cylinder lengths results in a high position error of the TCP. This sensitivity is 

calculated with the 2-norm for each entry of the manipulators inverse Jacobian matrix 
1−J  and is, as can be seen in figure 11, the highest in the border of the workspace. 

 

Figure 10: Applied concentrated parameter model for computed torque calculation with 
masses and inertia of active (a) and passive links (b), joint masses (c) and 

TCP load mass (d). 

 

Figure 11: Analysis of sensitivity s over the relative Cartesian displacements 
= 0x* x / l  and = 0y* y / l  with 0l  as the basis side length of the octahedron. 

Using standard controllers for hydraulic systems, we achieved the best results with an 

adaptive reduced state controller (position and pressure feedback) with hydraulic-

model-based feedforward signal of jointspace velocity and acceleration. One 

disadvantage of this controller design is that, in contrast to the presented nonlinear 

architecture, all controller gains are variable and just pay respect to the nonlinearities of 

the hydraulic system. When compared with the end value of the integral of time 

absolute error (ITAE) of the position in workspace we can notice, that under application 



of the presented nonlinear control architecture the control accuracy can be improved 

approximately 15 times for a two module VGT, see figure 12. 

 

Figure 12: Benchmark trajectory with 10 fold magnification of the position error for 
standard control design (a) and nonlinear control architecture (b) in workspace 

(left) and the positioning error ∆q in jointspace over trajectory time t (right). 

5. Summary 
In this paper we presented the mechanical design of a modular hydraulically driven 

octahedron shaped VGT and an advanced nonlinear control architecture to control the 

derived manipulators. 

Due to the use of hydraulic drives in the presented stiff and light-weight structure a high 

payload-to-mass ratio can be achieved, which allows highly dynamic motions and a low 

steady state energy consumption of the system. The composition of more than two 

modules of the presented design already results in a highly maneuverable, 

kinematically redundant VGT manipulator, which is capable of dexterous motion. The 

setup with identical modules and the high common part degree results in low-cost 

scalability of the manipulator to adapt to specific operation tasks. 

The static and dynamic characteristics of the manipulator with the proposed control 

approach were evaluated in a simulation study using a virtual prototype. The 

performance benefit obtained by the presented nonlinear control architecture is 

demonstrated in comparison with well-known linear control designs for hydraulic drives. 

While the linear controller, which is used as a reference, has to be chosen 

conservatively enough to tolerate all nonlinearities of the plant, the proposed nonlinear 

controllers are taking the nonlinear hydraulic and mechanical plant characteristics into 



account to ensure optimal control quality all over the workspace of the manipulator in 

order to ensure access to the full dynamical potential and accurate manipulation tasks. 
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7. Equation signs 

x , q  Coordinates in Cartesian and joint space, respectively 

fwdF , fwdq , fwdq  Feedforward values for motion control 

xM , xC , xg , J  Manipulator parameter in Cartesian space 



AA, AB Areas of cylinder rod 

d Viscous damping constant of cylinder 

FA, FB, Fext Forces: side A and B, external load force 

kF Controller gain of force controller 

KLip Inner oil leakage factor 

Kv Valve gain relating uE and yy 

m Effective piston rod mass 

p0, pT, pA, pB  Pressures: system, tank, port A and B 

Qnom, QA, QB Volume flows: nominal valve flow, port A and B 

Te Time constant of first order approximation of valve dynamics 

v Linearized input of the feedback linearization scheme 

yv Valve position 

yy Cylinder displacement 

∆p Nominal pressure drop in valve 

α, β Linearization terms 

Koil Stiffness of hydraulic oil 

ω0, Dv Dynamic properties of valve: corner frequency and damping 

 


