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Abstract 
Mobile machines such as wheel loaders or excavators are used in a variety of 

applications. Thus the assessment of typical load cases for the design and 

development process of a machine will never incorporate all possible scenarios. Even 

bench tests may not be sufficient since environmental conditions and particularly the 

operator have a major influence on the state of the machine. The paper presented here 

describes a method to extract typical load cycles from “real-life” measurements of a 

given task, taking into account different skill and experience of the operator. Firstly 

cycle-specific features such as criteria for the evaluation of operator skill must be 

identified. Secondly a general approach for data reduction is used to derive a small 

subset of significant datasets from an extensive field test database of work cycles. That 

way, typical task- and feature-dependent cycles can be found. Finally those cycles can 

be used as input or reference for simulation experiments. This approach is 

demonstrated for the trenching process with a 20t excavator. 

KEYWORDS: excavator, data reduction, operator 

1. Introduction 
One of the major problems in the development of a mobile machine is the definition of 

an appropriate load model. The term “load model” is used here in a general context. It 

not only covers the torques and forces acting on the contact area of the machine’s tool 

and the environment. For every single component of the mechanical structure, the 

powertrain, the hydraulic system etc., information about the loads it will be exposed to 



within the lifecycle of the machine, is required. This is the foundation for an optimal 

designed machine. 

For a modern mobile machine, such as an excavator, another unknown is added to the 

problem. Due to the variety of available tools that are easily exchangeable through 

quick coupling units, the machine is used for much more different tasks than just the 

excavation it was initially designed for. The user application range statistics, Figure 1, 

points out that in 2009 only 5% of all excavators were employed in “heavy duty” 

operation such as mining, cargo handling or industrial applications. I.e. they are 

expected to operate under rather constant working conditions over their entire lifetime. 

  

Figure 1: VDMA user application range analysis 2009 (January till June) 

The remaining 95% are used in various applications using different tools and 

performing different work processes. Practically the load assumptions for those 

machines have to be deduced from a combination of multiple scenarios with high and 

low performance demands, e.g. excavating and shaping ground, Figure 6. 
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Figure 2: Work cycles with different performance demands for a mobile excavator 

Finding an appropriate, general load model for these multi-purpose machines is 

extremely difficult since the OEM can hardly predict the – customer-dependent – usage 

of his machine. Moreover the operator comes into play. Even field tests with prototypes 

may be of limited validity since they are often performed by specially trained expert 
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operators. Having another operator executed the same task can lead to different states 

of the machine and its components. In addition field test often produce a huge amount 

of data that cannot be used as load model entirely. Thus a method is required to derive 

a representative set of work cycles from tests with varying operators. 

2. Approach 
In the literature there are many approaches that achieve data reduction by averaging a 

large number of measured cycles. Since the cycle times may vary considerably, a 

resampling to a common time axis has to be done (/1/). This leads to the problem of a 

distorted power-time-curve which doesn’t correspond to the measured one. That is why 

a new method shall be introduced here. The measured time series are left unchanged 

and their properties are described by characteristic quantities, so called „cycle 

features“. Those cycle features are subject to a stochastic deviation brought about by a 

multitude of external influences. It is claimed that a selection of only a few measured 

cycles can be used to approximate the overall measurement duration by the help of a 

statistical model. The reduced data may serve as input for simulation experiments or 

bench tests. Extrapolation of those results using the identified cycle feature 

distributions enables the estimation of the machine’s operational states for a longer 

period of operation. 

One of the most important influences on mobile machinery is the operator. His 

behaviour and physical actions specify the power level utilised to fulfil a certain task 

and the way the power is distributed to the different actors of the drive system (/2/ to 

/4/). As a consequence there will not be a unique, typical power cycle. Even the most 

skilled and experienced operators will not be able to perfectly reproduce a previous 

work cycle. Bearing in mind the manipulation of the environment by the machine’s work 

process, this becomes even more apparent. Regarding todays state of the technology 

it is not possible to develop a closed formal model for the human operator due to the 

variety of his mental and physical properties. Additionally, the operator has the ability to 

more or less quickly adapt to new and unknown situations as well as improving his 

skills through learning and experience. Hence a phenomenological approach is to be 

used for the description of the operator influence on power cycles. For that purpose 

suitable cycle features have to be defined at first. This enables to quantify the operator 

influence on the energy input of the machine for a selected work process – a so-called 

process pattern (/5/, /6/). Therefore a statistical model is to be developed which can be 

used for the design and the evaluation of drive concepts. 



One significant feature for the characterization of the operator’s skills in machine 

handling is the simultaneity level. It is defined as the average number of simultaneously 

controlled actuators, such as hydraulic cylinders or rotational drives, during one work 

cycle. It can be said that the higher the simultaneity level the more skilled the operator. 

Another feature for the quantification of the effectiveness of the machine usage for a 

given process pattern is the cycle time. This is the length of a cycle on the time axis 

without idle time. Again there can be stated, a lower cycle time implies a higher level of 

education. The third feature is the average cycle power which is calculated from the 

arithmetic mean of all instantaneous power values within the cycle. 

3. Case study mobile excavator 
The development of the statistic model of the cycle features is based on an exemplary 

field test. Therefore a mobile excavator of approximately 20t operating weight was 

equipped with numerous sensors and a data logger. It was handed over to a training 

school for construction equipment operators where the process pattern ‘trenching’ was 

executed with different operators, Figure 3. Measurement data was recorded for 1st 

year and 3rd year apprentices as well as two instructors. Finally the experimental data 

base was screened and the time series were cut into single work cycles. This way a 

total amount of 285 work cycles could be gained for further investigation. 

 

Figure 3: Trenching with 20t mobile excavator 

For a first analysis of the cycle features, all previous knowledge about the test persons, 

such as age or years of experience, was suppressed to test the objectivity of the 

approach. Figure 4 a)-c) shows the distributions of three cycle features respectively for 

all 285 work cycles. The visible variance of the cycle time as well as of the simultaneity 

level and the average cycle power impressively emphasizes the need to describe work 

cycles through their features and statistic distribution models. Moreover the 

interpretation of the data leads to the assumption that data points may be arranged in 

groups which are to be identified. 



The k-means algorithm /7/, a partitioning cluster analysis method, can be used to 

classify similar work cycles. A distance metric is introduced that quantifies the affinity of 

two cycles using the three cycle features simultaneity level, cycle time and average 

cycle power. Therefore the Euclidian distance was chosen from a number of various 

metrics found in the references. Since the cycle features are quantities with physical 

units, they have to be normalized to dimensionless quantities before doing any 

calculations. Subsequently, an iterative process is launched to assign the work cycles 

to a given number of cluster centres in a way that the sum of the distances between 

feature vector and corresponding cluster centre becomes minimal. 

a) 

 

b) 

 

c) 

 

Figure 4: Cycle features for 285 work cycles 

After a screening of the available data base, the cloud of data points was partitioned 

into two clusters. The result is displayed in Figure 5. The data points of the first cluster 

show a large variance of cycle times and a low simultaneity level. These cycles can be 

interpreted as those of inexperienced operators. In contrast, the data points of the 

second cluster are less scattered, have lower cycle times and a higher simultaneity 

level which indicates more experienced operators. In order to test whether the result of 
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the cluster analysis corresponds to the level of education, the relative frequencies of 

allocating a cycle to the experienced or inexperienced group were established for each 

test person. The result is shown in Figure 6. 

 

 

Figure 5: Result of the 3-dimensional cluster analysis 

As was expected from their education level, the cycles of operators 1 to 3 respectively 

11 and 12 were primarily assigned to the experienced group. Subjects 4, 5 and 10 

were apprentices of the first teaching year and allocated to the inexperienced group by 

means of the cluster analysis. A significant difference between group assignment and 

level of training was detected for subjects 6 to 9. Operators 6 to 8 correspond to the 

experienced group, whereas for apprentice 9 no clear assignment could be made.  

 

 

Figure 6: Cycle allocation to clusters 

Generally speaking, the classification of operator skills using the characteristic features 

described in this section is more objective then the grouping by education level. 

4. Processing 
Based on the classification result, a statistical model can be determined for each group. 

It allows for drawing conclusions from a sample to a whole population. Therefore a 

Shapiro-Wilk-Test for examining the assumption of normal distribution was applied. 

The result shows that on a significance level of 5% the hypothesis of a normal 

distribution has to be rejected. Considering the marginal distributions of the features a 

high skewness was discovered. By applying the transformation (1) which was proposed 
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by /8/ the assumption of normality can be satisfied. A suitable λ was found such that 

the transformed data corresponds to a normal distribution described by (2) (/9/). 
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After this, a mean vector μ and a covariance matrix Σ were estimated for each group. 

Transforming the probability density function to the original feature space and 

comparing it with the absolute frequencies of the samples, a high order of convergence 

can be found. Figure 7 also shows the necessity to distinguish between different types 

of operators, as the distributions significantly differ from each other. 

Experienced operator 

 

Inexperienced operator 

 

  

  

Figure 7: Absolute frequency (blue) and probability density function (red) of the cycle 
features 
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These representations can be used to derive design criteria, taking into account 

statistical uncertainties. For example, the expectation of the probability density function 

is a proper measure for the cycle duration (Figure 8). The group of experienced 

operators shows a value of 24.5 seconds, while the inexperienced operators have a 

value of 47.3 seconds. When determining the average cycle performance, the 

expectation value is unsuitable since 50% of cycles require more power. A high 

quantile e.g. the 90%-quantile can be more adequate. As a result, the mean cycle 

power is approximately 23.8 kW for experienced operators and 13.3 kW for the 

inexperienced. 

  

Figure 8: Determination of design criteria taking into account statistical uncertainties 

In addition to the definition of design parameters, the statistical model can be used for 

extrapolation to longer operation times. First a limited number of cycles have to be 

selected, which are meant to be representative. These cycles form the basis of further 

investigations so a homogeneous distribution in the feature space should be aspired. A 

hierarchical cluster tree can be used for the selection. Figure 9 shows ten 

representative cycles for the two operator groups respectively. 

 

 

Figure 9: Representative cycles (circled points) in the feature space 

As the time-dependent load and velocity data is available, for these 10 chosen cycles 

the evaluation of energy consumption and pollutant emission of the propulsion system 

as well as the operation point distribution at any system component (e.g. diesel engine) 
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in the system can be done using simulation or bench tests. Subsequently the results 

(e.g. operation point distribution per cycle) are weighted with the values of the 

probability density function, corresponding to the cycles, and a superposition is applied. 

The quality of the extrapolation can be shown on the operation point distribution of the 

arm cylinder. Figure 10 a) shows the spectrum taking into account all of the 208 cycles 

of the experienced operator group. In contrast, the results of 10 representative cycles 

are shown in Figure 10 b). In Figure 10 c) the spectrum considering a single working 

cycle, being the closest point to the maximum of the probability density function, is 

shown. 

a) 

 

b) 

 

c) 

 

Figure 10: Operation point distribution of the arm cylinder for experienced operators 
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5. Summary 
The method described in this paper provides a way to determine representative 

performance cycles from extensive measurements. The operator influence is 

incorporated by a statistical model of characteristic features. That way, the operating 

behaviour of a machine, for a process pattern and operator type, can be described 

through only a few representative working cycles which are manageable inputs for 

simulation or bench tests (Figure 11, /10/). 

 

Figure 11: Workflow for propulsion system benchmark 

Making use of a statistical model, the results can be extrapolated to longer operation 

periods. Hence an effort reduction is achieved, since in this example the operation 

point distribution of 208 cycles is mapped onto 10 representative cycles. 
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